
Fine-Grained API Evolution for
Method Deprecation and Anti-Deprecation

S. Alexander Spoon
LAMP, Station 14

Swiss Federal Institute of Technology in Lausanne (EPFL)
CH-1015 Lausanne

lex@lexspoon.org

Abstract
API evolution is the process of migrating an inter-library
interface from one version to another. Such a migration re-
quires checking that all libraries which interact through the
interface be updated. Libraries can be updated one by one
if there is a transition period during which both updated
and non-updated libraries can communicate through some
transitional version of the interface. Static type checking can
verify that all libraries have been updated, and thus that a
transition period may end and the interface be moved for-
ward safely. A fine-grained checker can do so for individ-
ual changes to an interface, thus allowing interface changes
to be interleaved. Anti-deprecation is a novel type-checking
feature that allows static checking for more interface evo-
lutions periods than deprecation alone. Anti-deprecation,
along with the more familiar deprecation, is formally stud-
ied as an extension to Featherweight Java. This study finds
weaknesses in current popular deprecation checkers.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features—
Modules, packages

General Terms Design, Languages, Management, Stan-
dardization

Keywords Java, Scala, interfaces, components, API evo-
lution, interface evolution

“In Java when you add a new method to an interface,
you break all your clients.... Since changing interfaces breaks
clients you should consider them as immutable once you’ve
published them.” –Erich Gamma [21]

“NoSuchMethodError” –Java VM, all too frequently

0. Fair notice
As fair notice, this article further develops work that was
presented at an OOPSLA workshop, the workshop on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

FOOL 2006 Nice, France
Copyright c© 2006 ACM [to be supplied]. . . $5.00

Library-Centered Software Design (LCSD) [19]. The main
new contribution of this article is the allowance for individ-
ual transitions to forward via the wait set. The earlier LCSD
version allowed only all or no transitions in a program to
move forward.

1. Overview
Libraries communicate with each other via application pro-
gramming interfaces (API’s), or interfaces for short. The
key idea with interfaces is that so long as a set of libraries
conform to their interfaces, those libraries will tend to func-
tion together when they are combined. This approach is a
key part of standard discussions of software modularity [2].

This interfaces idea supports independent evolution of
libraries, in that libraries can be updated so long as they
continue to conform to their interfaces. However, this strat-
egy does not address evolution of the interfaces themselves.
Since in practice the first definition of an interface is often
insufficient, practitioners need some approach for improving
interfaces. This is the problem of interface evolution.

Interface evolution arises in practice for large projects
with multiple independent development groups. The Eclipse
project, for example, includes plugin code written by devel-
opment groups all over the world. For such projects, sub-
stantial attention is put onto the problem of safely upgrad-
ing interfaces [5].

Transition periods provide a general mechanism for evolv-
ing the interfaces between independently maintained li-
braries. A transition period is a period of time during which
both updated and non-updated libraries can successfully
communicate through an evolving interface.

During a transition period, all libraries that conform to
the original version of an interface must be allowed to con-
tinue to function. As the transition period progresses, more
and more libraries should be updated for the forthcom-
ing version of the interface, while continuing to work with
the transitional version of the interface. A transition period
can successfully terminate when all libraries communicating
through the interface have been either updated or aban-
doned. At that time, the interface itself can be upgraded.

Static type checking can be used to verify that a transi-
tion period may be safely entered or left. At the beginning
of a transition period, static checking can ensure that all
libraries conforming to the current interface will continue
to conform to the new, transitional interface. At the end
of a transition period, static checking can ensure that all
checked libraries are ready for individual changes to the in-

public interface ConnectionListener {
public void connectionClosed();
public void connectionClosedOnError(Exception e);

}

public interface ConnectionListener2
extends ConnectionListener {

public void connectionAuthenticated();
}

Figure 1. Two interfaces from Eclipse. The second inter-
face is the same as the first except that it requires one new
method.

public interface ConnectionListener {
public void connectionClosed();
public void connectionClosedOnError(Exception e);

forthcoming
public void connectionAuthenticated();

}

Figure 2. With forthcoming methods, the new method
could have been gradually phased into the original interface.
Once all relevant code has been updated for the new method,
the forthcoming keyword can be removed, resulting in a
single, updated ConnectionListener interface.

terface to progress. The same checker can ideally be used for
both purposes; it can detect which changes can progress in
the normal course of type checking the program.

This article studies static type checking for deprecation
and anti-deprecation of methods. Deprecation is widely
used, while anti-deprecation appears to be novel for pro-
gramming languages. After describing the features in gen-
eral, the article defines them formally as an extension to
Featherweight Java [11], and proves several core properties
about the formalism. This systematic study not only defines
the new feature, but unearths two places where current dep-
recation checkers could be improved.

2. Static transition checking
Static checking can help both entering and leaving transition
periods. When entering a transition period, the checker can
verify that clients will continue to compile and run, even
if not all libraries using the interface are available. As the
transition period moves forward, each library’s developers
can use the checker as they update their library to verify
that their updates are sufficient for the next version of the
interface. Once all libraries have been updated and checked,
it is safe to move the interface forward.

Put another way, the entries and exits of transition pe-
riods are refactorings [14]. If the static checker is satisfied,
then crossing these end points causes a change in program
syntax but not in program behavior.

This approach allows libraries to be updated even when—
especially when—the interface maintainer does not have
control over all libraries which communicate through the in-
terface. The conditions for entering a transition period are
weak enough that interface maintainers can begin a transi-
tion period without waiting for the other library maintain-
ers. Leaving the transition period has much stricter require-

ments. However, the requirements are such that each library
can be updated individually. Once the (loose) organization
of library maintainers has decided that sufficient checking
has occurred, and if no errors are known to be present, the
transition period can be left.

Note that some organizational process is required for
transition periods to work. A typical process would involve
a length of calender time, e.g. six months or one year. A
transition would be introduced, library maintainers would
be given the specified amount of time to update their li-
braries, and then the transition would be followed through.
Library maintainers who do not update, end up with bro-
ken libraries. More sophisticated processes would include
feedback from the library maintainers that could extend the
transition period. Many specific arrangements are possible,
and they are left as beyond the scope of the present article.

Transition checking can be integrated with a normal type
checker. Each time the type checker encounters code that
type checks now but which will have trouble after a planned
interface change occurs, the checker emits a transition warn-
ing about why the change cannot yet be moved forward.
Fine-grained transition checking additionally calculates a
specific wait set. Each time the checker emits a warning,
it adds one or more planned interface changes to the wait
set. When the checker completes, any change not included
in the wait set may safely progress.

3. Anti-deprecation
Deprecation allows a static checker to emit warnings when-
ever a caller tries to use a method that is expected to dis-
appear in a future version of an interface. A complemen-
tary scenario is also important: sometimes a future version
of an interface will require an additional method. An an-
notation for such future required methods could be called
anti-deprecation.

The typical usage for anti-deprecation is shown in Fig-
ures 1 and 2. Figure 1 shows one of Eclipse’s “I*2” interfaces,
an interface that is an extension of an earlier interface. Expe-
rience with the framework showed that the earlier interface
was too thin, but given the nature of Java interfaces, new
methods could not be added to the existing, published inter-
face. Thus, the Eclipse developers added a second interface
which merely extends the first interface and adds one new
method.

With forthcoming methods, the designers would have
had the option to phase in the method to the existing
interface, as shown in Figure 2. During a transitional period,
the new method would be added but with the keyword
forthcoming. As long as the keyword is there, the method
cannot be called, but the type checker can use it to emit
warnings. In particular, the type checker can emit a warning
whenever it sees a class that implements the interface but
does not implement the forthcoming method. Such a class
can compile and run for now, but will have a problem when
the forthcoming method is upgraded to a normal method.

The full checking rules for forthcoming methods are as
follows. As described in the above example, if a forthcoming
method is abstract, then any non-abstract class that im-
plements the interface in question must either implement
the method with the correct type signature or receive a
warning. Additionally, a forthcoming method my override
another forthcoming method, but it will receive a warning
if it does. Finally, a forthcoming method cannot override
a non-forthcoming method at all. Allowing this case adds

complexity without utility. If a method is already present,
then what is the use of encouraging it further in a subclass?

The combination of deprecation and anti-deprecation al-
lows for an additional class of changes that neither mech-
anism supports alone: arbitrary changes to a method’s sig-
nature. For example, one might wish to change the set of
exceptions thrown by a method, or change a method’s re-
turn type, or change its public or private visibility.

Such changes can always be accomplished using four tran-
sition periods. The approach is analogous to swapping two
variables by using an auxiliary method. The first period in-
troduces a new, forthcoming version of the method with a
different name than the original method. Since the method
is new, it can be given any type signature at all. The sec-
ond period removes the forthcoming keyword from the new
method and deprecates the original method, thus inducing
callers to use the new version of the method. The third pe-
riod removes the deprecated original method and immedi-
ately replaces it with a forthcoming method with the new
signature and the original name. The fourth period depre-
cates the temporary method name, thus inducing clients to
change back to using the original method.

Alternatively, developers can choose a shorter two-phase
sequence if they are content for the new method to have a
different name from the original. They can simply stop after
the first two transition phases.

These rules for forthcoming and deprecated might seem
pessimistic. These rules are formed under the assumption
that developers in other groups might both implement any
interface and invoke the methods it advertises. If this as-
sumption were changed to restrict what other developers can
do, then some interface changes could be safely performed
with fewer or even no transition periods.

For example, suppose that one party controls an interface
along with all of its implementors. In that case, that party
can add methods to the interface without needing a transi-
tion period. They can simply make a simultaneous release
of the updated interface and the updated implementors of
that interface. Likewise, if one party controls all callers to
an interface, e.g. as with call backs, that party can remove
methods from the interface without needing a transition pe-
riod.

The present work addresses the less constrained scenario
where outside developers can both implement an interface
and call through it. The main reason for this choice is that
it is the more general and difficult case. However, notice
that even when outside developers are expected to be more
constrained in their work, it is desirable to allow them
the greater flexibility. At the least, it is useful for testing
if programmers can implement their own mock objects to
stand in place of the usual ones [12, 9].

4. Extending Featherweight Java
While deprecated and forthcoming are simple to describe,
it proves tricky to develop the precise rules for checking them
so that transition periods can be safely entered and left. In
order to determine the precise checking rules, the bulk of
this article focuses on a formal study of a small language
including these keywords.

The keywords are added to Featherweight Java (FJ)
[11], a language that has several appealing characteristics:
it is tiny, making it amenable to formal study; it uses
familiar syntax, so that the work is more approachable;
and it captures two features at the heart of object-oriented
languages, message sending and inheritance.

L ::= class C extends C { C̄ f̄ ; K M̄ X̄ N̄ }
K ::= C(C̄ f̄) { super(f̄); this.f̄ = f̄ ; }
M ::= C m(C̄ f̄) MB

MB ::= { return e; } | abstract
X ::= deprecated m;

N ::= forthcoming M ;

e ::= x | e.f | e.m(ē) | new C(ē) | (C)e

Figure 3. Syntax of FJ-ADF

MS ::= C.m

Figure 4. Method specifications

In one way, though, the FJ language is a little too small
for the present purpose: it does not include a notion of
interfaces. Instead of adding a full interface concept, it
suffices to add abstract methods. Abstract methods allow
abstract classes, which for the present purposes serve as
perfectly fine interfaces. The full extended language is called
FJ-ADF because it is Featherweight Java with three new
keywords: abstract, deprecated, and forthcoming.

A few notational issues bear comment. When a line of
code is written down by itself as an assumption, the meaning
is that that line of code appears somewhere in the program.
A sequence is written x̄, denoting the sequence x1, . . . , xn,
where #(x̄) = n. The empty sequence is • by itself, while a
comma between two sequences denotes concatenation. Pairs
of sequences are a shorthand for a sequence of pairs; for
example, C̄ x̄ means C1 x1 . . . Cn xn. The notation x ∈ ȳ
means that x = yi for some i. Negation, written ¬P , means
that P cannot be proven with the available inference rules.

4.1 Syntax and semantics

The syntax of FJ-ADF is given in Figure 3. There are a few
differences from FJ:

• Methods can be abstract. Any class that defines or inher-
its an abstract method is considered abstract and cannot
be instantiated with new.

• Methods can be forthcoming. A forthcoming method
cannot be used now, but will be added to a future version
of the class.

• Each class has a list of deprecated methods. Deprecated
methods are going to be removed in a future version of
the class.

An entire program is denoted CT or CT ′. Notationally,
CT is a table, and CT (C) is the class in the program named
C. Valid programs have several syntactic restrictions: the
inheritance hierarchy is non-cyclical, all field names and
parameter names are distinct, Object 6∈ dom(CT), every
class name appearing in the program is in the domain of
CT .

The fields function, defined in Figure 5, computes the
complete list of fields in a class.

Method specifications, defined in Figure 4, provide a
way to designate individual methods: a class name plus a
method name. The set MS includes all possible method
specifications.

fields(Object) = •
class C extends D {C̄ f̄ ; K M̄ X̄ N̄}

fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 5. Field lookup

MB-Conc

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) { return e; } ∈ M̄

mbody(m, C) = x̄.e

MB-Abs

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) abstract ∈ M̄

mbody(m, C) = abstract

MB-Inher

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
m 6∈ M̄ mbody(m, D) = MB

mbody(m, C) = MB

mbody(m, C) = abstract

abstract(C)

Figure 6. Method lookup

The mbody function, defined in Figure 6, is used during
evaluation to find the method responding to a message-send
expression. It is the same as in FJ except that there is a
new clause to support abstract methods. Notice that mbody
consistently ignores the deprecation (X̄) and forthcoming
(N̄) portions of class definitions. Those portions are only
used for type checking, not for execution.

The abstract function, also defined in Figure 6, checks
whether a class defines or inherits an abstract method. Such
classes are not allowed to be instantiated.

The semantics of the language are exactly the same as
those of FJ. They are given in Figure 7.

4.2 The wait set, Wait

The formal definition of static transition checking presumes
a wait set, denoted Wait, is provided before checking starts.
This set specifies all method specifications that are assumed
to be held back. The type checker assumes that all dep-
recated methods in Wait will not be removed, and that
all forthcoming methods in Wait will not be promoted to
normal methods. Methods not in the wait set, might or
might not be changed according to their deprecated and
forthcoming declarations, and the checker must verify that
these changes are safe.

As one example, if there is an expression in the program
that invokes a deprecated method, then that method must
be an element of Wait. Otherwise, removing that method
could cause type checking to fail or the program to stop
running.

The type checking rules are presented as if the wait set
is fixed and is supplied to the checker. It is also possible to
infer a wait set in the course of type checking, as discussed
below in Section 6.

On a technical note, the wait set is presented as a global
variable because it does not vary during type checking.
Introducing the extra variable to all type judgments would

R-Field
fields(C) = C̄ f̄

(new C(ē)).fi −→ ei

R-Invk
mbody(m, C) = x̄.e0

(new C(ē)).m(d̄) −→ [d̄/x̄, new C(ē)/this]e0

R-Cast
C <: D

(D)(new C(ē)) −→ new C(ē)

RC-Field
e −→ e′

e.f −→ e′.f

RC-Invk-Recv
e −→ e′

e.m(ē) −→ e′.m(ē)

RC-Invk-Arg
e −→ e′

e0.m(d̄, e, f̄) −→ e0.m(d̄, e′, f̄)

RC-New-Arg
e −→ e′

new C(d̄, e, f̄) −→ new C(d̄, e′, f̄)

RC-Cast
e −→ e′

(C)e −→ (C)e′

Figure 7. Evaluation

add clutter without clarification. As a result, the predicates
candep, postneeds, and postabs are sensitive to the wait set
even though it does not appear in their argument lists.

On another technical note, the complement of the wait
set is written as MS−Wait . Since MS is the set of all method
specifications, MS−Wait is the set of method specifications
that are not held back.

4.3 Type checking

Subtyping for FJ-ADF is shown in Figure 9. As with FJ,
subtyping corresponds exactly to the subclass hierarchy.

The mtype function, defined in Figure 8, looks up the
type of the responding method when a message is sent
to an instance of a particular class. As compared to FJ,
FJ-ADF’s mtype function has two new parameters: one
determining which forthcoming methods to include, and
one determining which deprecated methods to include. The
choice of these parameters is typically influenced by Wait ;
deprecated methods are only considered when they are in
Wait, and forthcoming methods are only considered when
they are not in Wait.

Generally, a deprecated or forthcoming method is only
visible to mtype if it appears in the depr or forth argument,
respectively. As one exception, MT-Depover allows a dep-
recated method to be visible even when it is not in depr,
so long as it overrides another method that is otherwise
visible. Without this exception, mtype would suffer an in-
consistency: specifying a more specific subclass for the first
argument could cause mtype to become undefined. Lemma 2
would not hold.

The mavail function, also shown in Figure 8, claims that
a method is available in a particular class. Its arguments are
the same as for mtype. It is typically used in the negative,
to claim that a method is not available at all.

Post-abstract classes are those that might become ab-
stract after the program evolves forward. The postabs func-
tion, defined in Figure 10, gives a conservative notion of
post-abstract classes. It is defined in terms of a more specific
postneeds predicate which claims that a method might be ab-

MT-Here

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) MB ∈ M̄

(C.m ∈ depr) ∨ (m 6∈ X̄)

mtype(m, C, forth, depr) = B̄ → B

MT-Forth

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) MB ∈ N̄

C.m ∈ forth

mtype(m, C, forth, depr) = B̄ → B

MT-Inher

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
m /∈ M̄ m /∈ N̄

mtype(m, D, forth, depr) = B̄ → B

mtype(m, C, forth, depr) = B̄ → B

MT-Depover

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) MB ∈ M̄

C.m 6∈ depr m ∈ X̄
mtype(m, D, forth, depr) = B̄ → B

mtype(m, C, forth, depr) = B̄ → B

mtype(m, C, forth, depr) = B̄ → B

mavail(m, C, forth, depr)

Figure 8. Method type lookup

C <: C
class C extends E {. . .} E <: D

C <: D

Figure 9. Subtyping

stract in the class following either the removal of deprecated
methods or the upgrading of forthcoming methods to nor-
mal methods or both, excluding methods in the wait set.
A class that has any postneeds method is considered post-
abstract.

The type checker of FJ needs to be updated in two
ways for FJ-ADF. First, it needs to address the three new
keywords. Second, it works with a wait set. An FJ-ADF
typing judgment is written Γ ` e : C. As usual, Γ is a static
typing environment, e is an expression, and C is a type (i.e.,
a class).

The typing rules for expressions are shown in Figure 11.
Only two of these rules differ from FJ. First, the T-Invk
judgment must specify the two extra parameters of mtype.
The first additional argument is always ∅, because methods
that are merely forthcoming are not allowed to be invoked,
regardless of the wait set. The second additional argument
is Wait, because it is precisely the deprecated methods in
the wait set which may be invoked.

The other changed rule is T-New, which now disallows
instantiating abstract classes. This rule means that an in-
variant during evaluation is that all instantiated objects are
concrete, thus making it safe for T-Invk to consider abstract
methods as potential callees. Post-abstract classes, a super-
set of the abstract classes (Lemma 6), are also disallowed;
a class is not allowed to be instantiated if it might become
abstract after forthcoming changes.

The rules for checking methods are given in Figure 12.
The main change from FJ is that all forthcoming methods
not held in the wait set must have types conforming to

postneeds(m, C)

postabs(C)

PN-Abs

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) abstract ∈ M̄

postneeds(m, C)

PN-Deprec

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
postneeds(m, D) m ∈ X̄ C.m 6∈ wait

postneeds(m, C)

PN-Forth

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
B m(B̄ x̄) abstract ∈ N̄

C.m 6∈ wait

postneeds(m, C)

PN-Inher

class C extends D {C̄ f̄ ; K M̄ X̄ N̄}
postneeds(m, D) m 6∈ M̄

postneeds(m, C)

Figure 10. Post-abstract classes

Dep-Wait
C.m ∈ Wait

candep(m, C)

Dep-Unavail

class C extends D {. . .}
¬mavail(m, D,MS −Wait ,Wait)

candep(m, C)

Dep-Postneeds

class C extends D {. . .}
postneeds(m, D)

candep(m, C)

Figure 14. Patterns of overriding can force a deprecated
method to be in the wait set. Even though the method is not
accessed directly in the program text, it might be accessed
indirectly due to method dispatch.

the methods above and below them. An additional change,
included for simplicity, is that abstract and forthcoming
methods are only allowed when they do not override a
previously existing non-forthcoming method. There is no
useful purpose to adding a forthcoming method underneath
an existing method. Adding an abstract method under an
existing method is sometimes useful, but the complication
adds no insight for the present purposes.

Finally, the rule for typing a class is given in Figure 13.
The main addition is that all deprecated methods must
be allowed by candep, which is defined in Figure 14. The
candep predicate forces extra deprecated methods into the
wait set, beyond those already required by T-Invk and T-
New, depending on patterns of inheritance and overriding.
The predicate places no restriction on methods that are in
the wait set (Dep-Wait), and it provides two cases where a
method may be left out of the wait set.

The first allowed case is when a method is unavailable in
all of the superclasses of a class (Dep-Unavail). Note that
the mavail occurrence in the assumptions of Dep-Unavail
is exactly the negation of that in T-Invk, and further that
a failing mavail test remains false if you move up the class

T-Var
x : C ∈ Γ
Γ ` x : C

T-Field
Γ ` e0 : C0 fields(C0) = C̄ f̄

Γ ` e0.fi : Ci

T-New

fields(C) = D̄ f̄ Γ ` ē : C̄ C̄ <: D̄
¬postabs(C)

Γ ` new C(ē) : C

T-Invk

Γ ` e0 : C0

mtype(m, C0, ∅,Wait) = D̄ → C
Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C

T-UCast
Γ ` e0 : D D <: C

Γ ` (C)e0 : C

T-DCast
Γ ` e0 : D C <: D C 6= D

Γ ` (C)e0 : C

T-SCast
Γ ` e0 : D D 6<: C D 6<: C stupid warning

Γ ` (C)e0 : C

Figure 11. Typing of expressions

T-Method-Fresh

class C extends D {. . .}
¬mavail(m, D,MS −Wait ,MS)

x̄ : C̄, this : C ` e0 : E0 E0 <: C0

C0 m(C̄ x̄) { return e0; } OK IN C

T-Method-Over

class C extends D {. . .}
mtype(m, D,MS −Wait ,MS) = C̄ → C0

x̄ : C̄, this : C ` e0 : E0 E0 <: C0

C0 m(C̄ x̄) { return e0; } OK IN C

T-Method-Abs

class C extends D {. . .}
¬mavail(m, D,MS −Wait ,MS)

C0 m(C̄ x̄) abstract OK IN C

T-Method-Forth

class C extends D {. . .}
¬mavail(m, D,MS −Wait ,MS)

C0 m(C̄ x̄) MB OK IN C

forthcoming C0 m(C̄ x̄) MB OK IN C

Figure 12. Typing of methods

T-Class

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.f̄ = f̄ ; }
fields(D) = D̄ ḡ

∀m ∈ X̄ : m ∈ M̄ ∀m ∈ N̄ : m 6∈ M̄
M̄ OK IN C
N̄ OK IN C

∀m ∈ X̄ : candep(m, C)

class C extends D { C̄ f̄ ; K M̄ X̄ N̄ } OK

Figure 13. Typing of classes

hierarchy and perform the same mavail query in a superclass
(Lemma 2).

The second case is that a class postneeds the specified
method name. In such a case, even though mavail sees that
method name, the method in that class will not be invoked.
The reason is that the receiver class is post-abstract, and
thus T-New will not allow the receiver class to be instan-
tiated. It will only be allowed to implement a non-post-
abstract subclass, and that subclass must by implement the
method name with a method that is either in the wait set
or is not deprecated. Since the method will not be invoked
in this case, it is safe to deprecate and remove it.

5. Properties
Given the careful definition of FJ-ADF, we can now study
some properties that it achieves. The properties are divided
into two parts: typical type-soundness properties and prop-
erties to support statically checked interface evolution.

5.1 Type soundness

FJ-ADF is type sound in the usual sense: it enjoys both
subject reduction and progress theorems.

Theorem 1. (Subject Reduction). If Γ ` e : C and e −→ e′,
then Γ ` e′ : C′ for some C′ <: C.

The proof structure is very close to that for subject
reduction for FJ. The main differences are in the supporting
lemmas.

The first lemma is that mtype’s last two arguments do not
change the type the function calculates, but only whether
the function is defined or not. Enlarging either one of the last
two arguments can cause the function to become defined,
but never to become undefined.

Lemma 1. (Internal Consistency of mtype). Suppose that
mtype(C, m, forth, depr) = C̄ → C0. Suppose that forth ⊆
forth ′ and depr ⊆ depr ′. Then, mtype(C, m, forth ′, depr ′) =
C̄ → C0.

Proof. Straightforward. Most of the justification rules of
Figure 8 can still be used if the third and forth arguments of
mtype are increased. The only exception is MT-Depover,
which cannot be used if C.m 6∈ depr but C.m ∈ depr ′. In
that case, however, the application of MT-Depover can be
replaced by an application of MT-Here.

The following lemma shows that, ignoring forthcoming
methods, once mtype returns a result at one point in the
class hierarchy, it returns the same result deeper in the
hierarchy.

Lemma 2. (Subclasses and mtype). Suppose CT is OK. If
mtype(m, D, ∅,Wait) = C̄ → C0, then for all C <: D, also
mtype(m, C, ∅,Wait) = C̄ → C0.

Proof. Induct on the derivation that C <: D. C = D is
a trivial case, so suppose that C extends E and E <:
D. By the inductive assumption, mtype(m, E, ∅,Wait) =
C̄ → C0. This means that mavail(m, E, ∅,Wait), and
thus by Lemma 1 that both mavail(m, E, ∅,MS) and also
mavail(m, E,MS −Wait ,MS).

If C does not include a method m at all, including
among its forthcoming methods, then MT-Inher gives the
desired result. If m is defined in C, then the method must
have been justified as OK using T-Method-Over; the
other T-Method-* rules cannot apply because their mavail

requirements cannot be met. Given that T-Method-Over
was used, all of the requirements are met to use either
MT-Here or MT-Depover, depending on whether m is
deprecated in C, to show that mtype(m, C, ∅,Wait) = C̄ →
C0. T-Method-Over requires that the new method has
the same type signature as the inherited method, and thus
that MT-Here or MT-Depover will give this inherited
type.

Lemma 3. (Term Substitution Preserves Typing). If Γ, x̄ :
B̄ ` e : D, and Γ ` d̄ : Ā where Ā <: B̄, then Γ ` [d̄/x̄]e : C,
for some C <: D.

Proof. Induct on the derivation of e’s type, and do a case
analysis on the last typing rule used. The proof is then
exactly the same as with FJ, except that the argument
for case T-Invk must use the updated Lemma 2 given
above.

Lemma 4. (Weakening). If Γ ` e : C, then Γ, x : B ` e : C.

Proof. Straightforward induction.

The next lemma is modified from that for FJ by adding
two arguments to the use of mtype. The choice of parameters—
∅ and Wait—are those used by T-Invk.

Lemma 5. Suppose that CT is OK, mbody(m, C0) = x̄.e,
and mtype(m, C0, ∅,Wait) = D̄ → D. Then, there is a
D0 with C0 <: D0, and a C with C <: D, such that
x̄ : D̄, this : D0 ` e : C.

Proof. Straightforward induction on the derivation that
mtype(m, C0, ∅,Wait) = D̄ → D.

Proof. (Subject Reduction). The proof directly follows that
for FJ. Induct on the derivation that e −→ e′ and perform
a case analysis on the final reduction rule used.

Theorem 2. (Progress). Suppose that CT holding MS is
OK, and e is any well-typed expression.

1. If e includes (new C0(ē)).f as a subexpression, then
fields(C0) = C̄ f̄ and f ∈ f̄ for some C̄ and f̄ .

2. If e includes (new C0(ē)).m(d̄) as a subexpression, then
mbody(m, C0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.

Proof. If e includes (new C0(ē)).f as a subexpression, then
the desired result follows directly from e being well-typed
and the consequent requirements of rule T-Field. Consider,
then, any subexpression (new C0(ē)).m(d̄). Since the expres-
sion is well-typed, C0 must not be abstract. Furthermore,
T-Invk requires that mtype(m, C0, ∅,Wait) = D̄ → C for
some D̄ and C, and it also requires that #(d̄) = #(D̄).
Examination of mtype shows then that some superclass of
C0 must define a non-forthcoming method named m with
#(D̄) parameters. Since C0 is not abstract, that method
must also not be abstract, and so it can only be concrete.
Thus, mbody(m, C0) = x̄.e0 for some x̄ and e0.

As with FJ, several theorems follow immediately from
Theorem 1 and Theorem 2. FJ-ADF is type sound, in that
all terminating program executions either compute a value
or get stuck at an incorrect cast. Furthermore, cast-free pro-
grams do not get stuck and thus always proceed to produce
a value if they terminate. Since these theorems follow so
directly, the precise definitions and theorem statements are
omitted from this article.

5.2 Safe transitions

This section shows how to use the wait set of FJ-ADF to
evolve interfaces safely. There are two properties given which
show when it is safe to add a deprecated or forthcoming
method, thus entering a transition period. Following, there
are two theorems showing that, when a program strictly
checks, it is safe to remove deprecated methods as well
as to upgrade forthcoming methods to normal methods.
Finally, there are four theorems showing that when the four
described safe changes are made, the resulting programs not
only type check but continue to behave identically.

Because these properties all involve two programs, there
are two versions of each relation and function. To disam-
biguate between the two versions when it is not clear from
context, the program can be used as a subscript. For exam-
ple, abstractCT (C0) means that C0 is abstract in program
CT , and Γ `CT ′ x : e means that x type checks in program
CT ′.

For simplicity, the wait set Wait is held fixed for the
transition theorems. The introduction theorems could be
tightened by only requiring A.m to be in the wait set
after the discussed introduction and not before. Additionally
requiring A.m to be in the wait set before the introduction
simplifies the theory with no practical impact.

All of these properties discuss a single program being up-
dated from one version to the next. However, the properties
are carefully written to support updating single classes when
that class is going to be used in many different programs.

For the two introduction theorems, beyond requiring
transitional type checking, the properties only make require-
ments on the superclasses of the modified class. Thus, tran-
sitional changes can be introduced safely so long as the su-
perclasses of the changed class are immediately available.
Further, the requirements on superclasses are weak enough
that the superclasses are allowed to be modified without
invalidating the requirements of the theorem.

The two removal theorems, to contrast, require that all
interesting programs be strictly checked before it is safe to
perform the removal. This is potentially a lot of work, but, as
discussed in Section 2, the programs do not need to be tested
all at once. They can be tested one by one throughout the
transition period, as each collaborating development group
finds time.

Theorem 3. (Deprecation Introduction). Let CT be any
class table that is OK, class A be a class in CT , and m be
any non-encouraged, non-deprecated method defined by A.
Suppose that A.m ∈ Wait. Define CT ′ as the same class
table as CT except that m is deprecated in class A. Given
these assumptions, whenever Γ `CT e : C, it is also true
that Γ `CT ′ e : C. Further, CT ′ is OK.

Proof. Examine the helper functions and relations. The sub-
type relation (<:) is the same for CT and CT ′. The helper
functions fields and mbody are also the same. Further, mtype
is equivalent in the two programs when its fourth argu-
ment includes A.m. Conversely, whenever mtypeCT ′ is de-
fined with a fourth argument of ∅, mtypeCT is defined with
the same arguments.

Since A.m ∈ Wait , postneeds is equivalent in CT and
CT ′. The only non-trivial case is if postneedsCT (m, A),
but in that case A.m must be abstract, and thus also
postneedsCT ′(m, A,Wait). By extension, postabs is equiv-
alent for CT and CT ′.

Given all these equivalences, all typing deductions (the
T-* rules) that apply for CT also apply for CT ′. Thus, given

a deduction that Γ `CT e : C, the same deduction can be
used to show that Γ `CT ′ e : C. Likewise, CT ′ must be OK,
using the same deduction as used for CT .

Theorem 4. (Forthcoming Introduction). Let CT be any
class table that is OK, and let A be a class in CT which
does not define or inherit any method named m, i.e. it is the
case that ¬mavail(m, A, MS, MS). Suppose A.m ∈ Wait.
Suppose that the following method:

B m(B̄ x̄) body

is OK in A. Define CT ′ to be the same class table as CT
except that A has the following additional method definition:

forthcoming B m(B̄ x̄) body

Then, whenever Γ `CT e : C, it is also true that Γ `CT ′ e :
C. Further, CT ′ is OK.

Proof. The same proof structure is used as for Theorem 3.
First consider the helper functions and relations. Subtyping
(<:) is the same, and fields is the same.

The mtype predicate is more complex to analyze. When
its third argument does not include A.m, e.g. when the third
argument is ∅ or MS −Wait , the predicate is equivalent in
CT and CT ′, i.e. if it is defined in one program, it is also
defined in the other and with the same value. This is easily
seen because every derivation step used to calculate mtype
in one program, can also be used in the other.

Similarly, since A.m ∈ Wait , postabs and postneeds are
equivalent for CT and CT ′.

Given these equivalences, all of the inference rules can be
used, and thus every type deduction used for CT can also be
used for CT ′. Note that all uses of mtype or mavail during
transitional checking specify a third argument that does not
include anything in Wait.

The next two lemmas show that postabs behaves as
expected. These properties are used to prove the last two
safe transition theorems.

Lemma 6. If abstract(C), then postabs(C).

Proof. A straightforward induction on the derivation that
mbody(m, C) = abstract. Each derivation rule matches one
of the available rules for deriving postneeds(m, C).

Lemma 7. Suppose CT type checks, and that CT ′ is the
same as CT except that possibly some deprecated methods
not in Wait have been removed, and possibly some forth-
coming methods not in Wait have been promoted to normal
methods. Then, whenever postneedsCT ′(m, C), it must also
be that postneedsCT (m, C).

Proof. Straightforward induction over the derivation that
postneedsCT ′(m, C).

Corollary. (Accuracy of postabs). Suppose the conditions of
Lemma 7 are met. Then, whenever ¬postabsCT (C), it must
also be that ¬postabsCT ′(C).

Proof. Follows directly from Lemma 7.

Theorem 5. (Deprecation Removal). Let CT be OK, let
A be a class in CT which defines a method named m that
is deprecated, and suppose A.m 6∈ Wait. Define CT ′ to
be the same class table as CT except that m is removed
from A. Then, whenever Γ `CT e : C, it is also true that
Γ `CT ′ e : C. Furthermore, CT ′ is OK.

Proof. Again, start by examining the helper functions. The
subtype relation (<:) is the same for CT and CT ′, as is the
fields function.

Lemma 7 and its corollary apply, and so any class
¬postabs in CT is also ¬postabs in CT ′.

The behavior of mtype is more complex to analyze. Two
cases include all usages of mtype during type checking. First,
if A.m 6∈ depr , then mtype(n, C, forth, depr) is equivalent
for CT and CT ′. This can be seen by inducting over the
calculation of mtype; the only non-trivial subcase is usage
of MT-Depover for m in class A, but that subcase can be
replaced in CT ′ by a use of MT-Inher.

The second case is that of mtype(n, C, MS−Wait , MS).
Whenever mtype with these arguments is defined for CT , it
is either defined as the same value for CT ′, or it is undefined
for CT ′. Whenever it is defined for CT ′, it is also defined
for CT and with the same value. The first property can be
seen by inducting over the calculation of mtypeCT , where
the only non-trivial case is the use of MT-Here for class A
and method m. If mtype is defined at all in CT ′ for these
arguments, then its definition must be justified with MT-
Inher. In that case, T-Method-Over is the only possible
way to type check A.m in CT , in which case MT-Inher
must give the same result in CT ′ as the type MT-Here
gave in CT . The second property can be seen by inducting
over the calculation of mtypeCT ′ , where analogously one use
of MT-Inher must be replaced by a use of MT-Here.

Whenever postneedsCT (n, C), either postneedsCT ′(n, C),
or else ¬mavailCT ′(n, C, MS − Wait ,Wait). This can be
seen by inducting over the derivation that postneedsCT (n, C).
The only non-trivial case is deriving postneedsCT (m, A). If
PN-Abs was used for this derivation, then T-Method-
Abs ensures that ¬mavailCT ′(n, C, MS − Wait ,Wait). If
PN-Deprec was used for this derivation, then PN-Inher
can instead be used for CT ′. Given these equivalences for
postneeds, whenever candepCT (n, C), it is also true that
candepCT ′(n, C).

Finally, given all of the above equivalences, all typing
derivations that were used in CT can also be used for
CT ′.

Theorem 6. (Forthcoming Upgrade). Let CT be a class
table that is OK, and let A be a class in CT which has the
following method definition:

forthcoming B m(B̄ x̄) body

Suppose that A.m 6∈ Wait. Define CT ′ to be the same class
table except that the above method definition is replaced by
the same method without the forthcoming:

B m(B̄ x̄) body

Then, whenever Γ `CT e : C, Γ `CT ′ e : C. Furthermore,
CT ′ is OK.

Proof. The fields function remains the same.
The postneeds predicate is also the same, and thus so is

postabs. The same derivations can be used in CT and CT ′,
except that for the specific case of postneeds(m, A), we must
exchange a use of PN-Abs with a use of PN-Forth.

Whenever mtype(n, C, ∅,Wait) is defined in CT , it
is defined in CT ′ with the same arguments. Whenever
mtype(n, C, MS − Wait , MS) is defined in either CT or
CT ′, it is defined in the other program and with the same
value.

The OK check for method m of class A must change from
using T-Method-Forth to T-Method-Abs. All other

derivations can remain the same, given the above equiv-
alences for the helper functions.

Given the previous four theorems, it is straightforward to
show that in addition to the updated CT ′ being type safe,
all type-safe expressions evaluate equivalently both in CT
and CT ′.

Theorem 7. Let CT and CT ′ be as in Theorem 3. If
e −→CT e′ and Γ ` e : C, then e −→CT ′ e′.

Proof. Since fields and mbody are the same for CT and CT ′,
the same derivation used for e −→CT e′ can be used to show
that e −→CT ′ e′.

Theorem 8. Let CT and CT ′ be as in Theorem 4. If
e −→CT e′ and Γ ` e : C, then e −→CT ′ e′.

Proof. The fields function is the same for CT and CT ′.
The mbody function is the same except that with some
arguments it is defined as forthcoming in CT ′ whereas
in CT it is undefined. Since we assume that e does move
forward a step, the cases where mbody are undefined in CT
are irrelevant. Thus, mbody is the same for CT and CT ′ for
all argument tuples that are relevant. Therefore, the same
derivation used to show that e −→CT e′ can be used to show
that e −→CT ′ e′.

Theorem 9. Let CT and CT ′ be as in Theorem 5. If
e −→CT e′ and Γ ` e : C, then e −→CT ′ e′.

Proof. Induct on the derivation that e −→CT e′. The
only non-trivial case is if the rule R-Invk is used. Note
that whenever mtypeCT (m, C, ∅,Wait) is defined, then
mbodyCT (m, C) = mbodyCT ′(m, C). This can be seen by
inducting over the calculation of mtypeCT (m, C, ∅,Wait).
Given this, the case for R-Invk is also straightforward.

Theorem 10. Let CT and CT ′ be as in Theorem 6. If
e −→CT e′ and Γ ` e : C, then e −→CT ′ e′.

Proof. The same as for the previous theorem.

6. Wait-set inference
The wait set does not have to be supplied to the type
checker, even though the typing rules are described as if
it were. It is possible for a type checker to begin with an
empty wait set, and then to add methods to the wait set in
the course of normal type checking.

The core property supporting this approach is as follows.
Roughly, if the wait set is enlarged, then all previously
verified type judgements remain true. Thus, it is sufficient
to add items to the wait set as problems are determined.
The one complication is that enlarging the wait set can
cause uses of candep to no longer succeed. In particular,
if a deprecated method is added to the wait set, then
any deprecated methods overriding it must also be added.
Thus, whenever the wait set is enlarged, it is necessary to
additionally add any deprecated methods for which candep
is no longer true.

Lemma 8. Suppose CT is OK and expression e type checks
assuming wait set Wait. Suppose that Wait ′ ⊇ Wait is
another wait set such that candep(m, C) for all deprecated
methods C.m in CT . Then, CT is also OK and e also type
checks with wait set Wait ′.

Proof. The type judgements can mostly be reused as they
are under the larger wait set. By assumption, candep ap-
proves of all deprecated methods, and thus the non-trivial
part of T-Class is satisfied. For the typing of methods
(T-Method-*), most of the rules can be reused due to
Lemma 1. The one exception is that T-Method-Over may
not be usable with the larger wait set, but whenever it can-
not, then it can be replaced by T-Method-Fresh. For the
typing of expressions using T-Invk, Lemma 1 again ensures
that enlarging the wait set will allow this expression to con-
tinue to type check. The rest of the typing rules for expres-
sions, with the exception of T-New, refer to nothing that is
sensitive to the wait set.

The remaining case is T-New, which requires that the
instantiated class not be post-abstract. Let us consider the
behavior of postneeds and postabs under the different wait
sets. After examining the definition of postneeds, it is clear
that if postneeds(m, C) under wait set Wait ′, then also
postneeds(m, C) under wait set Wait . In turn, whenever C
is not post-abstract under wait set Wait , it is also not post-
abstract under wait set Wait ′. Thus, any use of T-New
under wait set Wait also applies under wait set Wait ′.

Given these properties, a combined checker can both
check types and infer a wait set. The algorithm is as follows.
Start with an empty wait set. Add all forthcoming methods
which, if not held, would cause one of the T-Method-*
rules to fail. Specifically, add those forthcoming methods
which are overridden either by another forthcoming method,
an abstract method, or a method with a different type
signature. Next, iteratively add all deprecated methods for
which candep cannot be established otherwise.

Then check the expressions of the program. In addition
to the usual type-checking checks, the checker might need to
increase the wait set whenever T-Invk or T-New is used.
If a message-send expression invokes a deprecated method,
thus causing T-Invk to be unusable, then the method should
be added to the wait set so that T-Invk can succeed. If
a new expression instantiates a class that is post-abstract
but not abstract, causing T-New to be unusable, then the
checker should add to the wait set each inherited method of
the instantiated class that is either: a forthcoming abstract
method, or a deprecated concrete method which overrides
an abstract method. Whenever the wait set is increased due
to either T-Invk or T-New, the checker must also add any
deprecated methods for which candep no longer holds true.

As future work, this algorithm can be refined in two
major ways. First, it is unclear that this algorithm finds
minimal wait sets, or indeed that there always exists a
single minimal wait set at all with the current typing rules.
Second, no limit is established on the methods for which
candep can fail after a method is added to a wait set. As
described, the entire class table must be scanned, but it
appears sound to scan only those methods overriding the
newly added method, and furthermore to stop scanning past
any methods which are checked but do not need to be added
to the wait set.

7. Weaknesses in current tools
Existing checking tools do not include enough checks to
guarantee safe exits from transition periods. For a checker
to make such guarantees, it must include a check for each
place the FJ-ADF type system is sensitive to the wait set,
and it must include FJ-ADF’s checks on overriding between
different kinds of methods. There are four such places in the

abstract class A
{

abstract int foo(int x);
}

class B extends A
{

/**
* @deprecated
*/
int foo(int x) {

return x+1;
}

}

class Client
{

void run() {
A a = new B();

}
}

Figure 15. Removing a method can cause a class to become
abstract. Instantiating such a class should cause a depreca-
tion warning.

type system. Three apply to deprecation-only checkers (with
no anti-deprecation), but only one of those three is checked
by Sun javac version 1.5.0 06 or the checker within Eclipse
3.2.

All code samples in this section mark deprecation in the
comments, rather than with a deprecated keyword, in order
to match the requirements of existing implementations.

Method invocation The T-Invk rule does not allow a
message-send expression to invoke a method that is dep-
recated, unless that method is in Wait. Current checkers
capture this familiar rule.

Post-abstract methods The T-New rule does not allow
instantiating a post-abstract class, i.e. a class that might be
abstract after a change not in Wait is moved forward. An ex-
ample is given in Figure 15. Class B is not abstract currently,
but it will become abstract once the deprecated method foo
is removed. Thus, while B is not abstract currently, it will be
after its deprecated method is removed. An ideal transition
checker should issue a warning for code that instantiates B,
because such code will no longer function if the deprecated
method is removed. No warning is given, though, by javac
or Eclipse.

Deprecated methods and overriding Overriding pat-
terns can prevent the safe removal of a deprecated method,
even when T-New and T-Invk identify no problems. For
a deprecated method to be removable, it must additionally
not be callable indirectly, via a non-removable method in a
superclass.

An example problem appears in Figure 16. The code in
class C type checks by considering method A.frob, but at
run time it invokes B.frob. If method B.frob is removed,
then the behavior of the program will change and B’s in-
variants might be broken. If this behavior change is truly
acceptable, then B.frob should be removed instead of dep-
recated. Again, javac and Eclipse do not issue a warning
for this code.

class A
{

void frob() {
System.out.println("frobbed!");

}
}

class B extends A
{

int accesses = 0;

/**
* @deprecated
*/
void frob() {

accesses += 1;
super.frob();

}
}

class Client
{

void run() {
A a = new B();
a.frob();

}
}

Figure 16. Deprecating a method that overrides a concrete
method can result in invariants being broken.

Forthcoming methods and overriding Overriding
patterns also put restrictions on which forthcoming meth-
ods may be upgraded to normal methods. The specific
requirements are discussed informally in Section 3. Anti-
deprecation is not supported at all in existing tools, and so
no code examples are given.

8. Related work
There has been substantial work supporting interface evolu-
tions that are refactorings [4, 1, 10, 15]. When such work ap-
plies, the benefit can be immense, because the transition pe-
riod can be shortened or even eliminated. Nonetheless, many
desirable interface changes are not refactorings at all. For ex-
ample, not all uses of deprecated methods can be rewritten
to use non-deprecated methods. Sometimes the basic func-
tionality is being removed. For such changes, some kind of
transition period is necessary, and checking tools can help
entering and leaving those transition periods safely.

There has been work on language features to help man-
age or eliminate incompatibilities due to interface upgrades.
The reuse contracts of Steyaert, et al., allow detection of a
variety of upgrade problems when given only the new ver-
sion of an interface and not the old one [20]. The override
keyword of C# and Scala prevents accidental override of
newly added methods in a superclass [7, 22, 13, 16]. The
present work focuses more on managing the transition pe-
riods than on detecting or ameliorating problems after an
interface changes.

Interface definitions of various kinds have long supported
recording deprecation. Two examples for programming lan-
guages are Java’s deprecation annotations [3] and Eiffel’s
obsolete keyword [8]. The present work uses the same con-
cept but adds anti-deprecation.

Dig and Johnson have quantitatively studied the kinds
of interface changes that occurred during the lifetime four
software systems [6]. The authors start with the developers’
change logs and the version control systems for each software
system, and then use these data sources to identify the
relative frequency of several kinds of API changes. For
example, they classify over 80% of the API changes as some
kind of refactoring. Software science such as this provides
invaluable input for those designing transition mechanisms
that are to be useful in practice.

9. Future work
The present work is entirely theoretical. It remains future
work to try the forthcoming annotations and the new check-
ing rules in practice. Two platforms are promising for such
a study: Eclipse and Scala Bazaars [17, 18]. Eclipse, as pre-
viously discussed, is a very widely used platform with many
components developed independently. Scala Bazaars is a
code-sharing network for Scala users. Users share Scala code
compiled to Java bytecodes, and the compiled libraries all
too frequently become incompatible due to seemingly trivial
changes in the inter-library interfaces.

The theoretical work is also not complete. There are still
interface evolutions that are impossible to check with FJ-
ADF, and in the future more transitions will be investigated,
e.g. changes in the classes that are inherited. Also, inference
for the wait set is still poorly understood, as described in
Section 6.

Finally, a number of techniques complement evolution
checking. Detection remains important: how do developers
become aware that they are making an interface change? In-
terfaces themselves can be more flexible. For example, there
could be a construct, analogous to instanceof, for dynam-
ically testing whether an object implements a forthcoming
method. Organizational questions arise as well. For exam-
ple, is it helpful in practice to record a default “interface
evolution rate” at the package level, or should every change
have its own rate recorded, or should the tools avoid this
question entirely?

10. Conclusion
Interface evolution is a recurring practical problem. This
article investigates one technique, static checking for depre-
cation and anti-deprecation, which can make interface evo-
lution more graceful. Even these simple method-level evo-
lutions exhibit some subtlety, and a formal study of them
brings out weaknesses in existing implementations.

This work provides but one piece of a general under-
standing of interface evolution. Checking tools can poten-
tially check more than the method additions and removals
discussed in this article. Furthermore, checking itself is just
one tool in the toolbox for developers to address interface
evolution.

11. Acknowledgments
The anonymous reviewers read the original submission very
closely. Their many suggestions have greatly improved the
presentation.

The members of LAMP provide a wonderful environment
to nurture research.

The LCSD 2006 workshop participants gave much en-
couragement and helpful feedback on an earlier version of
this work.

References
[1] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring

support for class library migration. In Proc. of Object Ori-
ented Programming, Systems, Languages, and Applications
(OOPSLA), 2005.

[2] Douglas Bell. Software Engineering: A Programming
Approach, chapter 6: Modularity. Addison Wesley, 3rd
edition, 2005.

[3] Gilad Bracha, James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison Wesley, 3rd edition,
2005.

[4] Kingsum Chow and David Notkin. Semi-automatic update
of applications in response to library changes. In Proc. of
International Conference on Software Maintenance (ICSM),
1996.

[5] Jim des Rivières. Evolving Java-based APIs. http://www.
eclipse.org/eclipse/development/java-api-evolution.
html.

[6] Danny Dig and Ralph Johnson. The role of refactorings
in API evolution. In Proc. of International Conference on
Software Maintenance (ICSM), September 2005.

[7] ECMA. ECMA-334: C# Language Specification. European
Association for Standardizing Information and Communica-
tion Systems (ECMA), second edition, December 2002.

[8] ECMA. ECMA-367: Eiffel: Analysis, Design and Program-
ming Language. European Association for Standardizing
Information and Communication Systems (ECMA), 2nd
edition, June 2006.

[9] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe
Walnes. Mock roles, not objects. In Companion to the
ACM conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), New York, NY,
USA, 2004. ACM Press.

[10] Johannes Henkel and Amer Diwan. Catchup! Capturing and
replaying refactorings to support API evolution. In Proc. of
International Conference on Software Engineering (ICSE),
2005.

[11] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ. In Proc. of Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), October 1999.

[12] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-
testing: Unit testing with mock objects. In Proc. of
eXtreme Programming and Flexible Processes in Software
Engineering (XP), 2000.

[13] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak
Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay
Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An overview of the Scala programming language.
Technical Report IC/2004/64, EPFL, 2004.

[14] William F. Opdyke. Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois at Urbana-
Champaign, 1992.

[15] Jeff H. Perkins. Automatically generating refactorings to
support API evolution. In Proc. of Program Analysis for
Software Tools and Engineering (PASTE), September 2005.

[16] Scala web site. http://scala.epfl.ch.

[17] Scala Bazaars web site. http://www.lexspoon.org/sbaz.

[18] Alexander Spoon. Package universes: Which components are
real candidates? Technical Report LAMP-REPORT-2006-
002, École Polytechnique Fédérale de Lausanne (EPFL),
2006.

[19] S. Alexander Spoon. Anti-deprecation: Towards complete
static checking for API evolution. In Proc. of the Work-

shop on Library-Centered Software Design (LCSD 2006),
Portland, Oregon, October 2006. ACM.

[20] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo
D’Hondt. Reuse contracts: Managing the evolution of
reusable assets. In Proc. of Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October
1996.

[21] Bill Venners. A conversation with Erich Gamma,
part III. http://www.artima.com/lejava/articles/
designprinciples.html, June 2005.

[22] Visual C# web page. http://msdn.microsoft.com/
vcsharp/.

