Demand-Driven Type Inference with Subgoal Pruning

A Thesis
Presented to
The Academic Faculty

by

Steven Alexander Spoon

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

College of Computing
Georgia Institute of Technology
December 2005

Demand-Driven Type Inference with Subgoal Pruning

Approved by:

Olin Shivers, Advisor
College of Computing
Georgia Institute of Techhnology

Ole Agesen
VMWare, Inc.

Mary Jean Harrold
College of Computing
Georgia Institute of Techhnology

Spencer Rugaber
College of Computing
Georgia Institute of Techhnology

Yannis Smaragdakis
College of Computing
Georgia Institute of Techhnology

Date Approved: 25 August 2005

to Priscilla Kay Fulcher Pearce

ACKNOWLEDGEMENTS

This work is the result of almost a decade €bet. It owes whatever quality it has, to a number of
people who have provided help.

Thanks to my advisor, for guiding me through the process, teaching me how the research world
works, and providing substantial help on both the technical component and its presentation to the
world.

Thanks to my thesis committee, and to various ruthless program committees, for the invaluable
service of repeatedly carving my work to shreds.

Thank you, Mark Guzdial, for really understanding what graduate students are going through
at this university. Big departments can be cold machines for people who slip through the cracks,
and without your frequent help | likely would have been mangled and spat out the side long before
defending.

Thank you, Spencer Rugaber, who not only served on my committee, but also guided me
through the maze of published research as | developed a thesis topic.

Thank you, Roy Pargas, for introducing me to research and getting me hooked. Without your
influence, 1 might have drifted obliviously into a lucrative software development career just as the
90’s tech boom started.

Thank you, Ron Ferguson, Tony Hannan, Ted Kaehler, Alan Karp, Rick McGeer, John Maloney,
Mark Miller, Andreas Raab, Marc Stiegler, and all of the others whose many interesting conversa-
tions have helped connect my research to the rest of the computing universe.... and who have just
plain made it fun!

Thank you, Olivier Danvy and many other members of DAIMI, for providing a remarkably
pleasant and productive working environment in the Fall of 2004.

Thank you, my family, for always being there and encouraging me.

Thank you, Dan Ingalls, for pointing out that type inference really should be possible in Smalltalk.

Through all the miserable years of building analyzers that failed, that thought bugged me to keep

searching.
Finally, thank you, Alan Kay. In a field full of “inverse vandals” shifting around the pieces, you

have provided a deeply inspiring vision for personal computing.

TABLE OF CONTENTS

DEDICATION . . . iii
ACKNOWLEDGEMENTS e iv
LISTOF TABLES e Xii
LISTOFFIGURES e e Xiii

SUMMARY . . XVii

I INTRODUCTION . . . e e e e e 1

1.1 OVEIVIEW. o
1.2 ProblemDetails.
121 LargePrograms
122 SoundUpperBounds.
1.2.3 AllProgramsAccepted
1.24 Concrete TYPeS o i i e e e
1.2.5 Higher-orderLanguages i i i
126 Smalltalk
1.2.7 Context-Sensitive Analysis.

1.3 Howto Read ThisDocument o v v i e e i

I RELATED WORK 7

2.1 Related Problems.
2.2 Applications.
2.3 Aspects of Existing Algorithms oL o

2.3.1 AlgorithmFrameworks.,

o A p A W W NN N e

2.3.2 Contextand Kinds of Judgements. 13

2.3.3 Program Expansion Before Analysis. 15

2.3.4 Unification-Based DataFlow

235 StoppingEarly

16

2.3.6 Adaptation After AnalysisBegins. 17

2.4 Scalability
25 TypeChecking e e e

vi

Y

2.6 Knowledge-Based Systems. 21

2.7 Semanticsof Smalltalk. 22
DEVELOPING ANEW ALGORITHM oo 26
3.1 Observations 26
3.2 Approach 27
3.3 TheDDPAlgorithm e 28
3.4 AnExample Execution. 31
3.5 Properties of the General Algorithm 39
MINI-SMALLTALK . . . 40
4.1 OVEIVIEW. i o e e 40
4.2 Terminology. 41
4.3 Language OVEIVIEW o v vt e i e e e e e 42
44 SYNMAX o 42
4.5 Concrete Syntax forMethods. 44
4.6 ValidPrograms e 45
4.7 Literals. 46
4.8 Method Specifications and Block Specifications 46
4.9 FunctionsOver Syntax. o v i e e e e 47
4.10 Semantic STrUCtUreS o 47
4.11 Semantic Functions 50
4.12 Initial Configuration. 51
4.13 EXECULION o 53
4.14 Various Semantic Properties e 57
DATA-FLOW ANALYSIS IN MINI-SMALLTALK o o oo 62
5.1 \Variables. 62
51.1 Definition 62
5.1.2 Variables found Dynamically 63
5.1.3 \Variables found Statically 63
5.1.4 LemmasAboutVariables. L. 66
5.2 TYPES. . . . 68
5.3 DynamicContext. e 69

Vii

5.4 FlowPositions. 71
55 Judgements. 74
55.1 Typedudgements 74
5.5.2 SimpleFlowJudgements. 77
5.5.3 Transitive Flow Judgements 78
5.5.4 RespondersJudgements., 78
555 SendersJdudgements e 79
5.6 Goals. 80
5.7 Restrictions 81
5.8 Lattice Properties. 82
5.9 OtherProperties 98
VI JUSTIFICATION RULES e e e e 99
6.1 Meta-Judgements e 99
6.2 Subgoals: Justification Rules Viewed Backwards. 100
6.3 Overall Justification Approach. 102
6.4 TypelJdustifications 103
6.5 Flow Justifications 104
6.6 Responders Justifications. o L oL 109
6.7 SendersJustifications 109
VI SUBGOALPRUNING oottt et 118
7.1 Specific Pruning Algorithms..o 118
711 StopDead 118
7.1.2 LimitedRelevantSet 119
7.1.3 ShrinkingRelevantSet 120
7.2 WhentoPrune 120
VIICORRECTNESS OF DDP\ o oot e e e e e e e e 121
8.1 OVEIVIEW. o o 121
8.2 Lemmas. e 121
8.3 MainTheorem. 127
8.3.1 Transitive Flow Judgements in the Initial Configuration 128
8.3.2 Type Judgements in the Initial Configuration. 128

viii

IX

X

Xl

8.3.3 RespondersJudgements. 129
8.3.4 SendersJudgements 130
8.3.5 Typedudgements 131
8.3.6 SimpleFlowJudgements. 134
8.3.7 Transitive Flow Judgements 138
IMPLEMENTING DDP 140
9.1 AnalyzingFullSmalltalk 140
9.1.1 Primitive Methods 140
9.1.2 Instance Creation 142
9.1.3 Language Operations as Primitive Methods 142
9.1.4 Multiple Processes. e 143
9.15 InitialState 143
9.1.6 Arrays and Other Collections. 144
9.1.7 Array Literalsandendvar, 144
9.1.8 FlowoflLiterals. 144
9.2 ImplementationIssues. 145
9.2.1 Maintaining Tables AboutSyntax 145
9.2.2 Parse Tree COmpression o o v v v v v i e e 146
9.2.3 Supporting External SourceCade 146
CHUCK: A PROGRAM-UNDERSTANDING APPLICATION 148
10.1 OverallInterface 148
10.2 Available Queries. e 148
10.3 Browsing Derivations and TryingHarder. 149
EMPIRICAL VALIDATION OFDDPo e 156
111 ISSUEBS . . o o o o e e 156
11.1.1 BetterversusGood 156
11.1.2 Performance of Demand-Driven Algorithms 157
11.1.3 Performance of Type-Inference Algorithms. 157
11.1.4 Usefulness 158
11.1.5 Performance Criteria for Usefulness. 160
11.2 Alternative Experimental Designs. 0. 161

11.2.1 Comparisonto Competitors. 162

11.2.2 Comparison to Competitors in Other Languages. 162
11.2.3 Performance for Smaller Programs 163
11.2.4 Performance of Applications 164
11.25 Summary. e e e 165
11.3 Actual Experimental Design. e 165
11.3.1 TheProgramCodeTested 165
11.3.2 TheTrials. 166
11.3.3 TheMachine. 166
11.4 Summaryof Results 170
11.5 Analysisand Conclusions. 170
11.6 Informal Notes 171
11.7 A Pruning Schedule for Interactive Use 172
Xl PROPOSED LANGUAGE CHANGES e 175
XIMRFUTUREWORK . . . e e e e e e 178
13.1 OtherLanguagesandDialects 178
13.2 Exhaustive Analysis 178
13.3 Pruning o e e e e e e 179
13.4 Other Analysis Problems 179
13.5 Applications. 180
XIV DDP /CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES 181
14.1 EXIENSIONS. o e e 182
14.1.1 Source-TaggedClasses. 183
14.1.2 Inverse Type Goals i i i e 184
1413 SendersGoals. 185
14.1.4 Array-ElementType Goals 186
14.1.5 Type-SpecificFlowGoals. 187
142 Examples 188
14.3 Multi-level Source Tags« o o o 191
14.4 Related Work 192

Xi

LIST OF TABLES

Table 2.1 Type-Inference Performance Results from Grove,etal. 19
Table 2.2 Core of Abadi and Cardelli’s theory of objects. 24
Table 11.1 The components of the program analyzed. 166
Table 11.2 Speed oftheinferencer 167
Table 11.3 Precision of the inferencer., 167

Table 11.4 Calculation of expected time for the gradual-reduction pruning schedule.. 174

Xii

LIST OF FIGURES

Figure 3.1 ThédDPalgorithm. 29
Figure 3.2 Code forexample executian. 31

Figure 3.3 Example: The initial state of the knowledge base. There is one question, “What
isX?”, and it has a tentative answer, Bottom.. 35

Figure 3.4 Example: The root goal is updated. It now has two subgoals. Since the root goal’s
answer is consistent with all of the goal’s subgoals, the goal is marked as justiigd.

Figure 3.5 Example: The type goal foiis updated. Since the root goal depends on the type
goal forY, the root goal is no longer justified. 35

Figure 3.6 Example: The root goal is updated again. It is now consistent with its subgoals,
and so itis marked again asjustified. 0L 36

Figure 3.7 Example: The goal fen is updated. Sincpl is a parameter of methad foo:,
the algorithm must find the sendersiffoo: in order to find the type op1. . . 36

Figure 3.8 Example: The senders goal is pruned. The goal now hdBcesily conserva-
tive answer that no subgoals arerequired. 36

Figure 3.9 Example: The goal fpi is updated again. Two new subgoals are required, and
the root goal is no longer justified. Notice that the existing goakfisrreused.. 37

Figure 3.10 Example: The goal for X is revisited. Its answer needs no change.. 37
Figure 3.11 Example: The type goal feisupdated. 38
Figure 3.12 Example: The goal ferl is updated again. All goals are now justified, so the
algorithmterminates. 38
Figure 4.1 Abstract Syntax of Mini-Smalltalk. 43
Figure 4.2 Concrete syntax for methods of Mini-Smalltalk 45
Figure 4.3 Comparison of Block Specifications 48
Figure 4.4 Join for Block Specifications. 48
Figure 4.5 Meet for Block Specifications 48
Figure 4.6 Looking up the contour that binds avariablelabel 51
Figure 4.7 Reading and writingvariables. 52
Figure 5.1 Variables. e 62
Figure 5.2 Dynamic Variable Binding 64
Figure 5.3 Static Variable Binding. 65
Figure 5.4 Subtyping e 70
Figure 5.5 Joinfor Types. o i i e e e e 70

Xiii

Figure 5.6 Meetfor Types 72

Figure 5.7 Comparisonof Contexts. i 72
Figure 5.8 JoinforContexts e 72
Figure 5.9 MeetforContexts. i 75
Figure 5.10 Comparison of Flow Positions. 75
Figure 5.11 Join for Flow Positions. 75
Figure 5.12 Meet for Flow Positions 76
Figure 6.1 Overall JustificationRules. 103
Figure 6.2 Minimum Requirements of Judgements 103
Figure 6.3 Trivial Type Justifications., 105
Figure 6.4 Type Justifications.. 105
Figure 6.5 Return Type from Subroutine Invocations 106
Figure 6.6 Parameter Types after Subroutine Invocations 107

Figure 6.7 Trivial Flow Justifications for Variable Flow Positions. 110

Figure 6.8 Trivial Flow Justifications for Self Flow Positions 110

Figure 6.9 Non-Trivial Flow Justifications. 111
Figure 6.10 Flow into Method Invocation. 111
Figure 6.11 Flow intsendvar Statements 112
Figure 6.12 Flow intdbeval Statements. o 112
Figure 6.13 Flow from methods inkend statements. 112

Figure 6.14 Flow from methods inkendvar statements. 113

Figure 6.15 Flow from blocks intbeval statements 113
Figure 6.16 Transitive Flow Judgements. 113
Figure 6.17 Responders Justifications. 114
Figure 6.18 Trivial Senders Justifications, 116
Figure 6.19 Non-Trivial Senders Justifications. 117

Figure 10.1 The standard tools show the methods that potentially respond to a message-send
statement. L L L e 151

Figure 10.2 Chuck only displays potential responding methods that are consistent with its
typeinferences. L e 151

Figure 10.3 The standard tools show the statements that potentially invoke a method.. 152

Figure 10.4 Chuck only displays potential senders that are consistent with its type inferelrfgs.

Xiv

Figure 10.5 A user asks for the type of avariable. 153

Figure 10.6 Chuck displays the type of avariable. 153
Figure 10.7 A user asks where a variable’s contentsflow. 154
Figure 10.8 Chuck displays the locations where a variable’s contents flaw. 154
Figure 10.9 Sometimes Chuck fails due to lack of resources.. 155
Figure 10.10 The user may “retry goal” and specify that more resources should be used the
nexttime.. e 155
Figure 10.11 This time, the greater resources allow Chuck to infer a precise type.. . . 155
Figure 11.1 Graph of the inferencersspeed. 168
Figure 11.2 Graph of the inferencer'sprecision. 169

Figure 14.1 An example Smalltalk fragment that exhibits data polymorphism. In the first line,
¢, a, andother are declared as temporary variables. The ValueHolder class is
instantiated twice and the two instances are assignedmoother; a is assigned
the same value as Thus,a andc are aliases for the same object. A string is
installed into thea/c value holder on the fourth line, while an integer is installed
into other’s value holder on the following lineDDP/CT can distinguish these
two value holders from each other and deduce that thedntents” fetch on
the final line will produce a string, as shownkigure 14.2 188

Figure 14.2DDP/CT successfully infers that value holders assignedftom Figure 14.1can
only hold strings and the undefined objedl. As an aside, the object can hold
nil because all instance variables come into existence hatdihgDDP/CT is
not flow sensitive and thus cannot determine that ValueHolder’s instance variable
has been initialized beforententsisevercalled. 188

Figure 14.3 A variation of the code Figure 14.1 In this code fragment, the class ValueHolder
is stored into a variable before being instantiatBP/CT successfully distin-
guishes the two kinds of value holders—those stored and those stored in
other—justasitdidinFigure 14.1., 189

Figure 14.4 Another variation of the code kiigure 14.1 This time there is only one vari-
able,vhclassl1, used to hold class ValueHolder. In this caB&P/CT fails to
distinguish the two kinds of value holder created in this fragment; it infers the
same types for¢ contents” and “other contents”. However, it does dis-
tinguish these value holders from other value holders in the program at large,
ultimately inferring that both of these holders can hold only strings, integers, or
theundefinedobject. 190

Figure 14.5 Retrieving elements from an array. Data-polyvariant analysis is required in order
for the analyzer to connect objects removed from an array usingnessages to

objects placed into that array usiag:put: messages.. 190
Figure 14.6 The analyzer succeeds on the exampgtgare 14.5 191
Figure 14.7 Data-polymorphism occurs in numeric array computations.. 191

XV

Figure 14.8 The analyzer succeeds on the exampgtgure 14.7 192

Figure 14.9 A typical factory methodiakeHolder, for classPlatform. This kind of indi-
rection is useful to programmers in many circumstances, including the possibil-
ity that different platforms will implement the method to use feaient value-
holder class. Unfortunately for the analysis, however, all callers of this method
will receive aValueHolder with the same source tag: the single mention of
ValueHolder in themakeHolder method. 192

Figure 14.10 An example usage of the factory method ffégure 14.9 In this example,
the inferencer as described so far fails to distinguish separate container objects,
because both holders are given the same sourcetag.. 193

Figure 14.11 The analyzer merges flow through the ti@dént holders ifrigure 14.10and
so reports thath1 can hold both integers and strings.. 193

Figure 14.12 Using multi-level source tags on the example fragare 14.10it is possible
to distinguish objects that are created via a factory object. 194

XVi

SUMMARY

Highly dynamic languages like Smalltalk do not have much static type information imme-
diately available before the program runs. Static types can still be inferred by analysis tools, but
historically, such analysis is onlyffective on smaller programs of at most a few tens of thousands
of lines of code.

This dissertation presents a new type inference algoribid®, that is d@fective on larger pro-
grams with hundreds of thousands of lines of code. The approach of the algorithm borrows from the
field of knowledge-based systems: it is a demand-driven algorithm that sometimes prunes subgoals.
The algorithm is formally described, proven correct, and implemented. Experimental results show
that the inferred types are usefully precise. A complete program understanding application, Chuck,
has been developed that u§#3P type inferences.

This work contributes th®DP algorithm itself, the most thorough semantics of Smalltalk to
date, a new general approach for analysis algorithms, and experimental analBP @icluding
determination of useful parameter settings. It also contributes an implementab@yf general

analysis framework for Smalltalk, and a complete end-user application thab¥es

XVii

CHAPTER |

INTRODUCTION

1.1 Overview

Dynamic programming languages give a tight interface between programs and the humans. They
do so in part by removing the need to restart a program whenever the human requests changes to be
made. The result is an interface like Smalltak42] or the Lisp Machine 45|, interfaces where

the human is more like a sculptor molding clay than an operator submitting punched cards. Such
interfaces share a similarity with mature operating systems: users may make many changes without
rebooting the entire computer. Users of a dynamic language, similarly, can make many changes
without rebooting the entire running program.

These dynamic interfaces must tolerate programs that are less than pristine. In particular, the
languages must have very flexible type systems in order to avoid chicken-and-egg problems when-
ever a programmer tries both to change the type of some variable and to update the locations the
variable is used. This type-checking challenge is so great that most dynamic languages include no
type checker at all. As a result, programmers in dynamic languages can make changes more readily,
but they have less automatic information about the programs they have created.

Type checkers, however, give useful type information. Such types can be used for program
understandingd4], for dead code removaP], and for improved compilation32, 59]. By giving
up a type checker, dynamic programming environments seem to sacrifice these good static tools.

There is another source of type information, however: program analysis. Specifically, type
inference. Type-inference algorithms can analyze a program and produce correct statements about
the types that portions of a program will have when the program executes, even in environments
that do not insist on all programs type checking.

The type-inference problem is challenging. Such algorithms must successfully process arbitrary
programs, in the full generality that programmers are allowed to use in a dynamic language, in

contrast to a type checker that is allowed to rejeéficiently difficult programs. Such an algorithm

must, for most languages, contend with data flow and control flow depending on each other. Such

algorithms can infer better types when they repeatedly analyze the same expressions under multiple
assumed execution contexts, yet history shows that they must be careful not to analyze under too
many contexts or they will require too much memory (and thus time) to be practical.

This work describes a new type inference algorithm and shows thatfieigtige. Specifically:

Demand-driven algorithms that prune subgoals can infer types that are correct, that are
usefully precise, and thatf@iér depending on calling context, in Smalltalk programs

with hundreds of thousands of lines of code.

1.2 Problem Details

The problem addressed in the present work is to infer types in large Smalltalk programs without

giving up on context sensitivity. This section describes several aspects of this chosen problem.
1.2.1 Large Programs

Type inference is an old problem, and there are néf@ctive algorithms for programs of up to

tens of thousands of lines of code, even with all of the other problem constraints described below.
Therefore, the present work focuses on larger programs of at least one hundred thousand lines of
code. When we write of “large programs,” we mean programs with at least one hundred thousand

lines.
1.2.2 Sound Upper Bounds

The correctness requirement of the present work, defined in det@hapter 5 is that inferred

types must be sound upper bounds. Consider a type judgement suéhabpfds aninteger or

aFloat.” The correctness requirement is that every value held by the vadablas the program

runs is either arinteger or aFloat. It is acceptable to have extra options, for exampl&oid

actually only holddnteger’s and nevefFloat’s. It is not acceptable fofoo to holdFraction’s.
Potential uses do not need to be reported. For example, the above judgement is correct even if

the code will function correctly whefioo is bound to &raction. As a result, a library is allowed

to have diferent types inferred when it is used byffdrent programs. In short, the present work

finds actual uses instead of potential uses.

1.2.3 All Programs Accepted

The goal of the present work is to accept all programs. It is a purgram analysisproducing in-
formation about an existing program, as opposeddmgram verificationwhich attempts to verify

that the program matches some specification—in this case, the specification that no type error oc-
curs when the program runs7]. Program verification cannot succeed on an arbitrary program. For
typical problems, verification cannot even succeed on all programs that match the specification—
otherwise, the algorithm would provide a solution to the Halting Problem. Verifiers, therefore, must
always reject some programs and must typically reject even some satisfactory programs. The as-
sumption in the present work is that too much code already exists to allow this kind of rejection.
The present work applies to arbitrarily objectionable programs.

The correctness requirement described above, “sound upper bounds,” follows from this choice.
Many other researchers study a stronger correctness requirement, that no type errors occur at run
time, but such researchers must allow some programs to be rejected. This stronger property has
two parts,progressandpreservatior52], of which the present work only guarantees preservation.

A type system guarantees progress if, whenever the types are correct, the program will continue
executing. A type system guarantees preservation, if whenever the program continues executing,
the types remain correct. In the present work, type information is correct so long as the program

continues executing, but the program might nonetheless stop executing at any time.
1.2.4 Concrete Types

Types, in the present work, are an abstraction over the concrete behavior of a program, and abstrac-
tion has an inherent traddetween brevity and detail. Extremely abstract types concisely describe
program behavior program, but they lose detail. Extremely concrete types provide great detail about
the program, but they lose brevity.

The present work studies relatively concrete types, such as “an Integer or a Float”, instead of
relatively abstract types, such as “a function framgd) tuples toa’s”. The precise type system is
described iChapter 5 In general, the strategy is that followed by Agesgnh {Concrete types are
useful for finding control flow information, which in turn is useful for many other program analyses.

Overall, concrete type inference is a stepping stone to other analyses.

1.2.5 Higher-order Languages

Higher-order languages are desirable, but they make analysis nfidcelti In particular, higher-
order languages have subroutine calls that semantically are bound at run time. Object-oriented
languages dynamically bind message sends to methods, while functional languages dynamically
bind function calls to functions. Classic data-flow algorithms for first-order langu&yesiinot
be used as they are on higher-order languages, because such algorithms presume that a control-flow
graph is easily computable before starting the analysis proper.

A conservative control-flow graph may still be computed through program analysis. This com-
putation, however, requires type information in order to be precise. The two problems are thus

intertwined: finding type information requires finding control-flow information, and vice versa.
1.2.6 Smalltalk

It is expected that the present work is applicable to a variety of programming languages. In order to
make progress, however, a specific dynamic programming environment has been studied initially.
Smalltalk has been chosen due to several advantages: it is used for larger programs; it is a small
language and thus convenient work with; and it includes the higher-order constructs of message
sending and higher order functions. Additionally, typical Smalltalk code makes exceptionally heavy
use of run-time binding. Even the conditional and looping constructs are implemented with higher
order functions instead of being in the syntax. Smalltalk programs thus stress a program analysis to
an exceptional degree. An algorithfiextive in such an extremely dynamic language is likely also
to be dfective in other, less dynamic languages.

Study of type inference in other dynamic languages is left for future work as descriGbadp

ter 13
1.2.7 Context-Sensitive Analysis

The present work limits attention to context-sensitive type inferencers with directional data flow
(and thus that are not based on unification—these terms are describlealiter 2. Such algorithms
are widely agreed to produce more precise information about a program compared to other type

inferencers, but they are also widely rejected for use in large programs due to expected scalability

difficulties. It is not necessary to not reject such algorithms, however, and indeed the present work
demonstrates a context-sensitive inferencer that scales.

Our projectdeeplystudies one context-sensitive inferencer insteadrofdly studying a vari-
ety of inferencers including context-insensitive ones. Adjusting the existing alternative inference
algorithms for Smalltalk requires substantiffloet—it is more dificult than simply adjusting for a
different syntax. As one example, the expressions “Morph new”, “HtmIDocument new”, and “Or-
deredCollection new” would, without care, all be merged by the analyzer and given the same (large)
type. Smalltalk is simply a very dynamic languageyw is a method in the library instead of syntax.
Given the success of unification-based algorithms in C26]| jt is likely that such algorithms can
be adjusted to work in Smalltalk. Since it is not expected that they generate information as precise
as context-sensitive algorithms generate, this approach is not pursued in the present project and thus
it is left as an open research area.

The choice of studying context-sensitive analysis with directional data flow has two major ben-
efits. First, such analyzers have performance characteristics appropriate to the application area of
interactive programming tools. While it is likely that unification-based algorithms cartfee-e
tive in Smalltalk, it is less clear that they can produce results at the interactive speeds described in
Chapter 11and particularlysection 11.7

The second benefit is that the work achieves a wider impact. The analysis approach described in
this document should also b&ective in less dynamic languages such as Java, and thus the present

work revitalizes context-sensitive analysis in general.

1.3 How to Read This Document

This document begins by reviewing the history of type inference in dynamic languages, and it
develops from that history a new type-inference algorithm c@lBé. After the general description
of DDP, the document formalizd3DP and the language it analyzes, filling in the remaining details
of the algorithm along the way. The formal work culminates in a proof of correctné3isdpter 8

The chapters after the proof of correctness each stand alone. There is a chapter on implemen-
tation techniques for those wanting to USBP in practice. There is a description of Chuck, a

program-understanding tool based@DP. There is a description of an experiment that measures

DDP in practice. There are a few recommendations for dynamic languages of the future to better
support type inference. Finally, there is discussion of future work in this line of research, including
a description of a beginning on this work, and some concluding remarks as this project draws to a
close.

Different readers will want to focus onfiirent parts of this document. Some suggestions are
given below. If you encounter unfamiliar terms or function names due to skipping chapters, try the
index; all functions and defined terms have an index entry.

If you want to implement a type-inference totblen you are probably most interested in the
workings of DDP and its performance envelope. You should focus most closefytapter 3 on
the non-formal parts d€hapter %hroughChapter 7and onChapter 9 You may also be interested
in Chapter 2to see a summary of the general field of type inference, as w€hapter 11to gain
some intuition about how to tune the main parametedbf. Chapter 14has information about a
promising direction of development for type inference. If you are not familiar with Smalltalk, you
should also skinChapter 4in order to learn the language syntax that is being used throughout this
document.

If you are a program analysis researchéhen you are probably most interested in theal
ences betweeDDP and other program analyses. You should focuChapter 2 Chapter 3 and
Chapter 14 Additionally, you may be interested @hapter Swhich builds on existing work to give
a refined description of context-sensitive data-flow information.

If you are a language designethen you are most interested in how type inference in dynamic
languages is progressing and on how language design makes analysis more ibedtigs.eYou
should focus orChapter landChapter 11as well as skimminghapter 2to gain a view of the
status of type inference as of the time of this work. Additionally, you should G&egbter 120 see

recommendations stemming from this work for the development of future dynamic languages.

CHAPTER I

RELATED WORK

Type inference in dynamic higher-order languages has been studied for decades. This chapter de-

scribes this related work from severaftdrent perspectives.

2.1 Related Problems

Several analysis problems are closely related to type inference. Type-inference enthusiasts should
be aware, while reading the literature, that algorithms for a related problem often include many
ideas relevant to type inference. In fact, many algorithms which directly solve the related problem
also solve a bona-fide type-inference problem along the way. This section describes several related
problems that have been studied and should be considered even by those ultimately interested in
type inference.
The problem examined in the present worlyise inferencé2, 12, 27, 70, 20, 64]. This problem
also goes by the namége determinatiof64], concrete type inferend@], andclass analysi$20].
The problem, from this perspective, is to analyze a program and predict what type of values the
variables or expressions of the program will hold when it runs. ifference determination or
analysispart means that the program is assumed to have no type annotations on the variables,
implying that the analyzer needs to infer types where none are explicitcdieeteor classpart
means that the kind of types being inferred are sets of runtime values. That is, they are types such
as “Integer, Float, or Fraction,” as opposed to abstract types such as, “an expression that has no side
effects”. There is no exact boundary between abstract types and concrete types, but most would
consider both sets of classes and the types inferred in the present research as relatively concrete.
A related problem iglata-flow analysisn general L1, 22, 57]. To infer types, the algorithms
typically find paths through which values flow from one part of the program to another. For example,
if they see a statememnt := y in the program, they note that there is a path frprto x. Any

types that arrive iry can flow on tox as the program executes. Conservatively approximating the

resulting flow is the problem of data-flow analysis. Inferring types usually involves an algorithm
that is sdficient to perform data-flow analysis in general, and vice versa.

Finally, control-flow analysi$59] is a related problemCall-graph constructiorandcall-graph
extractionare examples of control-flow analysis in object-oriented languages. In general, control-
flow analysis predicts the order in which parts of a program will execute. In higher-order languages,
where there are late-binding constructs such as message sending and first class functions, finding
precise control flow requires predicting types as well. To find the control flow for a message send,
one must predict the classes to which the receiver might belong; to find the control flow for a
function invocation, one must predict which functions might flow to the function expression at the
call site. In both cases, finding precise control flow requires also finding concrete types along the
way. Similarly, finding precise types in a higher-order language requires predicting how the late-
binding operations will be bound, thus showing that type inference is the same problem as precise
control flow. Do note that less precise control-flow algorithms do not need to find types: they make
conservative estimates of the late-binding operations and thus do not need to find type information.

The fastest algorithms described in the survey by DeFouw, et al., make just such dftfaée o

2.2 Applications

Type inference is usually studied in order to enable some specific application. All existing type-
inference techniques are useful for all of these applications, thotighetit applications will prefer
the use of dferent techniques. Some applications prefer a fast type-inference algorithm that finds
types quickly enough that they can be used in interactive tools, while other applications only require
that the inferencer be fast enough to find the types overnight. Some applications need precise types
to be useful at all, while others can fruitfully use types that are not very precise. Some applications
prefer a type inferencer that can be focused to find types for one specific portion of a program, while
for others the inferencer may as well analyze the entire program.

My motivating application igprogram understanding24]. Inferred types can help a program-
mer who is trying to understand the internal workings of a particular program. The inferred types
are directly useful themselves, and they also help program-understanding tools such as diagram

generators and static debuggers. Program understanding applications prefer those type-inference

algorithms that run relatively quickly, as well as those that can be focussed on the portion of a large
program that the programmer is currently studying.

Another common application igrogram transformationincluding transformations to make a
program run more quicklycompiler optimization[10], and transformations to remove portions
of a program that are not needetkéd-code removg[3, 66]. Transformation for speed typically
prefers a type inferencer which can be targeted to a module or less at a time in order to support
separate compilation. Removing unused code requires an inferencer théficdantyy analyze an
entire program. Neither kind of transformer has special speed requirements; it is a useful tool even
if it must run overnight instead of running interactively.

Third, there are interactive programming tools that are mffiectve if they have better type
information. A refactoring browsei5p] can make more fine-grained refactorings if it has better
type information. For example, if a user requests that a particular method be renamed, a refac-
toring browser must additionally rename some other same-named methods in parallel; type infor-
mation can reduce the number of such additional methods that need to be renamed. The basic
name-completion commands of an interactive text editor need a shorter prefix from the user if type
information is available to lower the number of names that are relevant in a particular context. Such
tools prefer a type-inference algorithm that runs at interactive speeds and that can be targeted at
specific parts of the program.

A final application iserror detection62]. Type inference can be used to find potential locations
in the program where, for example, a message-send expression might fail to bind to a method (i.e., a
Smalltalk “does not understand” error). Error detection requires a highly precise type inferencer, but
it does not require that the inferencer be targeted at a portion of a program nor that it run especially

quickly.

2.3 Aspects of Existing Algorithms

This section discusses several aspects of existing type-inference algorithms. For each aspect, the
section describes the history of proposals for that aspect and then gives, from the point of view of
the present work, the state of the art on that aspect.

This approach seems more helpful to the reader than a description of individual projects in

detail. Future algorithms will be built by considering those aspects, not by mimicking individual
projects, and thus an understanding of the individual aspects is important. Nevertheless, extensive
reference is made to individual projects. Readers can, whenever they are interested, assemble these

references into a complete picture of each project from the point of view of the present project.
2.3.1 Algorithm Frameworks

There are three common algorithm frameworks used for type inference: abstract interpretation,
constraints, and demand-driven analysis. This section describes gives an overview of those three

approaches.
2.3.1.1 Abstract Interpretation

Theabstract interpretatiorframework treats analysis as an abstraction of execuli®d]. That

is, whereas the normal interpreter for a programming language computes with real program values
and real variable bindings, an abstract interpreter computes with abstract values—sydsas

and abstract variable bindings.

Formally, a regular interpreter might be described with equationsH{lee = v, meaning that
evaluating E) the expressioryields the value.. An abstract interpreter is described with equations
more likeE(e) = t, meaning that abstract interpretatidf) of the expressioe yields something of
typet. Such an analysis is correct if, for evezyE(e) is indeed a value of typE(e). In a word, the
abstraction should beonsistentith the concrete semantics.

In order to support more analysis problems, oftera-standard semantiés used instead of
the usual language semantics. For example, if one wishes to find feasible call-graph edges, then
one might begin by defining a non-standard semariicsuch thate’(e) = (v, c) determines not
only the valuey that is computed by, but also the list of call graph edgeshat are invoked in the
course of computing that value. An analyzer is then defined usiogatandard abstract semantics
(NSAS) and the analyzer is correct if the NSAS corresponds to the non-standard semantics. Since
the correctness of such an abstract interpretation depends on the choice of non-standard semantics,
the non-standard semantics ffieetdefineghe analysis problem.

Shivers used the abstract-interpretation framework to describe an entire family of type-inference

algorithms for Schemebp]. The algorithms within the family are fierentiated by the following

10

two parameters:

e Abstract valuesor types are an abstraction of program values.

e Abstract contoursor context are an abstraction of control and environment context. Context

is discussed further isubsection 2.3.2

Jagannathan and Weeks later describe a similar framework that includes other algorithm parameters
[39]. Sharir and Pnueli also use abstract interpretation in their early description of interprocedural

data flow p7]. Garau uses abstract interpretation to implement his Smalltalk type infer&ger [

2.3.1.2 Constraints

The constraintsframework describes algorithms generatinga number of constraints from the
program and thesolvingthose constraints to find information about the program. Constraints are
usually generated by simple syntax analysis. For example, every statement of thexfeeny][
might generate a constraint of the fotmx is a supertype of ty, wheret, andty, are variables
representing a type. A solution to the constraints is an assignment for all of the analysis variables
(tx, ty, ...) such that all of the constraints are satisfied.

Constraints come in a variety of forms, and each form leads téfereint method of solution.
Constraints such &g C ty, “ty is a subtype ofy,” lead to iterative solutions similar to those used
in classic intraprocedural data flow. Conditional constraints, su¢h:ak = ty C ty, capture data
flow in higher-order languages. In this example, the constraint claims thatdudes typel, then
the constraint, C t, becomes fective. Such constraints capture new data-flow paths becoming
feasible as control-flow paths become feasible. Equality constraints, sugh=asg, lead to the
unification-based algorithms discussed furthesubsection 2.3.4

Implementations take considerable liberty within the general constraints framework. Frequently,
constraints are not represented explicitly; since constraints are typically closely based on program
syntax, the constraints in many algorithms may as well be inferred as the analyzer progresses instead
of in a separate constraint-generation phase. Additionally, even when constraints are explicit in the
implementation, they are not always generated until there is reason to believe they will influence
the final result. In particular, a highly context-sensitive algorithm frequently has many conditional

constraints that never becomestive.

11

Constraints can be simplified considerably withofiieeting the solution to those constraints.
Some researchers have obtained substantial speed improvements by performing such simplifications
before proceeding to solve the constrairi4, 5, 6].

A large number of data-flow research projects use the constraints framework, including the work
of: Kaplan and Ullman41]; Suzuki [62]; Henglein 36]; Oxhgj, Palsberg, and Schwartzba&li]

Emami R3]; Agesen P]; Steensgaard6[l]; DeFouw, Grove, and Chamber2(]; Flanagan and
Felleisen R5]; Tip and Palsbergd7]; Aiken [6]; Wang and Smith7(]; and von der Al [69].

2.3.1.3 Demand-Driven Analysis

Demand-driven algorithms are organized arogodls A client postsgoalsthat the algorithm is

to solve, and the algorithm itself may recursively post more goalssgoals—in order to solve the

initial goals. The goal-subgoal relationship may be cyclical: a goal can be a subgoal of one of its
subgoals. When there is a cyclical subgoal graph, the algorithm typically update goals repeatedly
until every goal is consistent with its subgoals.

Demand-driven algorithms find information “on demand.” Instead of finding information about
every construct in an entire program, they find information that is specifically requested. Several
demand-driven versions of data-flow algorithms have been devel&pe? 4, 35, 21].

There are two primary advantages of a demand-driven analysis owexhaustive analysis
First, a demand-driven algorithm analyzes a subset of the program for each goal. If only a small
number of goals are needed, and only a limited portion of the program is analyzed while solving
each goal, then a demand-driven algorithm can finish more quickly than an exhaustive algorithm.
The exhaustive algorithm must analyze the entire program (or at least the live portion of it), while
a demand-driven algorithm can focus on the parts of the program relevant to the initial goals. This
advantage is particularly important for interactive program-understanding tools, where users ask the
tool for information on whatever code they are currently viewing.

Second, demand-driven algorithms can adaptively trafibetween precision of results and
speed of execution. If the algorithm completes quickly, then it can try more ambitious subgoals
that would lead to more precise information about the target goal. Likewise, if the algorithm is

taking too long, it can give up on subgoals and accept lower precision in the target goal. This idea

12

is explored in the next chapter.

The primary disadvantage of a demand-driven analysis is that it only finds information about
those constructs for which goals have been posted. If a client is in fact interested in information
about all constructs in an entire program, then it must either post an enormous number of goals, or
it must run the analysis many times withfférent initial goals. Thus a demand-driven analysis is
typically slower than an exhaustive analysis if the client does, in fact, want information about the

entire program.
2.3.2 Context and Kinds of Judgements

Type-inference algorithms typically produce one typeggemenfor each variable of a program.
Algorithms diter widely, however, in the judgements they process before producing their final
results. When an algorithm processes multiple judgements for each variable, the algorithm is called
context-sensitiver polyvariant Other algorithms, at the opposite end of the spectrum, process
judgements that each describe multiple variables. In the middle of the spectrum are algorithms that
process exactly one type judgement per variable. Examples are Kaplan and Ullman’s algétjthm [
and 0-CFABY].

At one end of the spectrum, context-sensitive algorithms process multiple judgements for each
variable of the program. The judgements for a particular variable are distinguished lppothteixts
A context, broadly, is some assumption about the state of execution. A judgement only applies when
its context matches the state of execution. When the context does not match, the judgement states
nothing and is trivially correct, much as an implication in logic is vacuously true whenever its
assumption is false.

A judgement with a specific context applies only to a small portion of possible execution states.
To produce final judgements with no context, the algorithm must analyze each variable under
enough contexts that all possible execution states are matched by at least one of the contexts. If
the algorithm uses restrictive contexts that only match a small portion of execution states, then the

algorithm must analyze each variable under a large number of contexts; likewise, if the algorithm

For clarity of exposition, algorithms are described in terms of assigning types to variables, even though many al-
gorithms assign types to other syntactic elements such as expressions, functions, classes, or methods. The distinction is
irrelevant for the present chapter.

13

uses broadly applicable contexts, then it needs to analyze under fewer contexts per variable. Specific
contexts tend to find more specific final information, but also tend to require more total execution
time due to the increased number of judgements that are stigfipd [

One widely studied kind of context is theall chain[57]. A call chain specifies which call
statements are at the top of the call stack. For example, “the immediate caller is statement 3 of
methodfoo,” or, “the immediate caller is statement 3 of methfiwb, and its caller is statement 4
of methodbar.” The number of call statements in a chain is typically limited by a constant that
is a parameter of the algorithm. For example, an algorithm might use call chains of length 4. The
number of contexts per variable is at worst exponential in the length of the call chains, with an
exponent base that is linear in the size of the program. Two of the many algorithms that use call
chains are KEFA [59] and Emami’s points-to analysi23J].

Another widely used kind of context is thparameter-types contexA parameter-types context
specifies the types of parameters of the currently executing method. For example, “the first param-
eter is aninteger and the second isEloat.” In an object-oriented language, a parameter-types
context can also specify the type of the method receiver, e.g. “the receiveilistager and the
first parameter is 8loat.”

There are subdivisions within the general approach of parameter-types contexts. The Cartesian
Products Algorithm CPA) uses contexts where each parameter type is a specific class; thus, the
contexts for each method correspond to the cartesian product of the classes in the type of each
parameter?]. To contrast, the Simple Class Se®&(d9 algorithm chooses one parameter-types
context for each combination of types that appear at some call site in the pra&gfgam [

The termscontextandcalling contextare common$7], but other terms have been used as well.
Agesen discusses multiplemplateof a method, where the template$fdr in what this document
calls context §]. Shivers’ mathematical formulation of control-flow analysis in Scheme defines
context usingabstract contourgndcontour-selection functiof$9].

While the present project us€A-style parameter-types contexts, this aspect of type inference
is not settled. One call-graph surv8¢] gives empirical results about theitectiveness in Cecil and
Java, with algorithms using a traditior@introl procesgseeChapter 3. However, more empirical

research is needed before it is possible to characterize fileeedit kinds of context under broader

14

circumstances, especially in light of the new control process described in the present work.

Finally, at the opposite end of the spectrum from context-sensitive algorithms, there are al-
gorithms that process judgements that each apply to multiple variables. For exampidAthe
algorithm makes judgements of the form, “any variable in methnasiof typet” [67]. Tip provides
evidence thaXTA is effective for Java programs, but this author knows of no attempt to use this
approach in a language without static types. Perhaps, static types counteract the loss of precision
due to mixing multiple variables in the same judgement. Without static types, the approach may be

too imprecise to yield useful results. To date, no empirical evidence is available to decide.
2.3.3 Program Expansion Before Analysis

Programexpansioris an approach, not used in the present work, for gaining context-sensitive anal-
ysis without using context. The approach is to duplicate portions of the program before the main
analysis executes. The duplication increases the size of the program that the main portion of the
analyzer processes. When expansion is used, the analysis as a whole can find context-sensitive
information even if the main analysis is not context sensitive.

Expanding calls is one way to expand programs before analy$fis [For each method name
m and each call statemeathat invokes a method named a new method namm is computed.

All methods namedn are given an exact duplicate for each sughexcept that the name has been
changed frommto ms. All message-send statemestthat invoke a method namexdare rewritten

to invoke mg instead ofm. This transformation yields a program that behaves equivalently to the
original program. However, each duplicate of a methodchay now be analyzed independently.

The analysis becomes context-sensitive. The results are equivalent to using call-chain contexts with
chains of length 1.

Expanding away inheritance is another way to expand object-oriented programs before analysis
[31, 51]. Each method is copied to each class that inherits the method. As a result, each method is
analyzed multiple times, once for each possible class of the receiver. The results are equivalent to
using parameter-types context, where the receiver type of a context is a single class and all parameter
types of a context are the all-inclusive type.

Context, in general, is more flexible than expansion and is more convenient to discuss. Notably,

15

at least some work treats expansion as a formalism and uses an implementation that only duplicates

methods on deman@®1]. The present work uses context instead of program expansion.
2.3.4 Unification-Based Data Flow

Some algorithms consider the direction of data flow while others do not. The latter algorithms are
said to useunification because they proceed by equating (unifying) types with each other. Most
of the algorithms cited in this chapter use directional data flow because it is more precise, but
unification-based analysis can be executed more quickly.

Notable unification-based data-flow algorithms include those of HengBgl) Hteensgaard

[61], and DeFouw et al.Z0].
2.3.5 Stopping Early

The theoretical framework varies among type inference algorithms. Early algorithms such as Kaplan
and Ullman'’s begin with trivially safe judgements such as “variadiias typeAnything,” and then

they examine the program to find more precise judgements based on those that have already been
made f1]. The resulting judgements are known to be true by an inductive argument over the
number of judgement updates: the initial judgements are true, and each judgement derived from a
true judgement is true. A benefit of such algorithms is that they may stop at any time and still have
correct answers; further processing simply gives more precise answers.

All later algorithms give up this ability to stop early, in exchange for using an approach that
gives more precise results. They begin with overly precise judgements such as “vatiasiéype
Nothing” and then examine the program to find places where the judgement is too precise and
needs to be weakened. Such algorithms must continue until they reach a fixed point and have no
further weakening to perform; if they stop early then some of the types may still be too precise. This
approach requires a more sophisticated argument, often basdxtract interpretationinstead of
inducting over judgement updates to show that the results are correct, one would typically induct
over steps of execution: the results are correct in the initial state, and whenever one steps execution
from one state to the next, the results remain correct.

The extra precision of such algorithms comes from avoiding self-sustaining inference loops. For

example, if a program includes statements= y” and “y := x”, then any type judged fox can

16

never decrease lower than that judgedyfcand vice versa. If either of them starts as typgthing
then that is what they both will be when the algorithm terminates. To contrast, algorithms that start
with Nothing must simply ensure that whenever the typexdhcreases, the type of increases

commensuratelys andy must have the same type, but that type can be very precise.
2.3.6 Adaptation After Analysis Begins

A few algorithms involve some adaptation of approach while the algorithm executes. Among these,
most only adapt the approach after one complete set of judgements has been obtained; reflow anal-
ysis b9 is an example, as is Dé&band Feeley’s algorithn2[].

The algorithm family of DeFouw, Grove, and Chambe2@| [deserves special mention. The al-
gorithms in this family adapt the directionality of data flow while they execute. They begin by using
directional data flow, but after any one judgement has been visited more than a threshold number of
times, the algorithm adapts by starting to use unification-based data flow for that judgement. Such
algorithms get most of the speed benefit of purely undirected data flow, while gaining a significant

amount of the benefit of directed data flow.

2.4 Scalability

Several implementations of type inference algorithms have been experimentally tested. This section
gives a summary of the results of those experiments as a way to examine the scalability of existing,
implemented type inferencers.

Since the experiments useférent computers, code bases, and techniques of measuring per-
formance, it is diicult to compare the results directly. Instead, this section will give three pieces
of information on each experiment: the largest program on which the experimenter reported the
implementation is #ective, the kind of context sensitivity that the algorithm uses, and whether the
algorithm uses directional data flow. The first piece of information gives an idea of how well the
implementation scales, and the second two give an idea of the precision of the results of the im-
plementation. Both directed data flow and more context sensitivity give more precise results at the
expense of requiring more time.

The reported lines of code deserve some mention. The reported number below is consistently

17

the number of lines of code processed by the algorithm. Many algorithms based on abstract-
interpretation automatically ignore code that they determine to be dead code. In such cases, the
amount of code analyzed might be much less than the total code in the program. flidrende

is important if one is considering tools for cases where the live code is a small fraction of the total
code. The purpose of this section, however, is to survey the performance characteristics of existing
type inferencers. For that purpose, it is appropriate to report the amount of code actually analyzed
by the analyzer.

Ole Agesen performed experiments on his Cartesian Products Algorithm (CPA) in 21995 [
The largest example he reports is an application extraction involving the analysis of 4200 lines of
live code. This example required 30 seconds of execution time on a 167 MHz UltraSparc. The
analysis is context sensitive using CPA sensitivity, and it uses directional data flow.

Flanagan and Felleisen implementecbanponentiatiata-flow analysis and timed its execution
in 1999 R5]. The largest program they analyze has 17,661 lines of code. The analysis is not context-
sensitive but does use directional data flow. On a 167 MHz UltraSparc the analysis required 265
seconds.

Grove et al. implemented a variety of type-inference algorithamsl reported on their perfor-
mance in 199732]. Their results are summarized Table 2.1 The largest dynamically typéd
program they study is 50,000 lines of application code plus 11,000 lines of library code. They test
the algorithms on a 167 MHz UltraSparc with 256 MB of memory. On the 50,000 line program,
they find that none of their context sensitive algorithms complete in the available time and memory.
The only context-insensitive type-inference algorithm they try (the other context-insensitive algo-
rithms do not infer types) is based on 0-CF#9] and succeeds on the 50,000 line program in three
hours.

Grove et al. conclude from their experiments that context-sensitive algorithms sudbFes k-

do not scale to large programs in dynamic languages such as Cecil:

2They actually implement call graph recovery algorithms, but most of the algorithms are just as useful for type
inference.
3The Java experiments they report are irrelevant to the present work.

18

Table 2.1: Each box gives the running time and the amount of heap consumed for one algorithm
applied to one program. Boxes with represent attempted executions that did not complete in 24

hours on the test machine.
y | b-CPA| SCS| 0-CFA| 1,0CFA [1,1CFA [22CFA [3,3CFA |

richards 4 sec 3 sec 3 sec 4 sec 5 sec 5 sec 4 sec
(0.4 klocs) 16MB | 1.6 MB 1.6 MB 16MB| 16MB| 1.6 MB 1.6 MB
deltablue 8 sec 7 sec 5 sec 6 sec 6 sec 8 sec 10 sec

(0.65klocs)| 1.6 MB | 1.6 MB 1.6 MB 1.6MB| 16MB| 1.6 MB 1.6 MB
instr sched 146 sec| 83 sec 67 sec 99sec| 109sec| 334sec| 1,795 sec
(2.0klocs) | 14.8MB | 9.6 MB 5.7 MB 96MB| 96MB| 9.6 MB | 21.0 MB

typechecker 0 infty 947 sec| 13,254 sec 00 o0 o0
(20.0 klocs)) o0 45.1 MB 97.4 MB)) o0
new-tc 00) 1,193 sec| 9,942 sec)) 00
(23.5 klocs) 0 o | 62.1MB| 115.4MB 00 o0 00
compiler 00 oo | 11,941 sec 00 00 00 00
(50.0 klocs) 00 o | 202.1 MB) S IS) 00

The analysis times and memory requirements for performing the various interpro-
cedurally flow-sensitive algorithms on the larger Cecil programs strongly suggest that
the algorithms do not scale to realistically sized programs written in a language like

Cecil.

DeFouw et al. study a family of type inference algorithms that sometimes use unification-based
data flow RQ]. Most of them begin by using directional data flow, changing to non-directional data
flow when analyzing parts of the program that are proving expensive to analyze. They seem to
use the same test machine and code samples as in the Grove et al. survey of call graph recovery
algorithms. They again find that purely directional analyses fail to finish in the available time for
the 50,000 line program, nor even for their 20,000 line programs. Some of their hybrid algorithms
do complete on the 50,000 line program, though not the hybrid algorithms that allow any context
sensitivity. The fastest hybrid algorithms they tried, which have some directional data flow but no
context sensitivity, finish in 50-100 seconds on the 50,000 line program.

Finally, von der Al implemented a type inferencer and dead code remover for Smalltalk in
the Resilient environmehin 2004 B9], though he did not tune them for speed. His inferencer
uses DCPA context sensitivity, which is more context sensitive than Agesen’s CPA. He tested his

implementation on a 1.7 GHz Pentium 4 Mobile CPU. His dead code remover succeeded in 12-14

“http://www.oovm.com

19

seconds to extract a 237-method program from the 1238 methods it was embedded in. He reports
no other

In summary, context-insensitive analysis with undirected data flow is known téidxtiee on
50,000-line programs and may scale to even larger programs. Likewise, hybrid variants of such
algorithms that use some directed data flow should be slower only by a constant2attor [

The more precise context-sensitive algorithms, those algorithms that the present work focuses
on, are only known at this time to scale to approximately 30,000 lines of code. Due to the cubic
or slower performance of such algorithn®], they unlikely to be practical in the near future on
much larger programs, even as CPU speeds and memory sizes increase. Some modification of the

existing context-sensitive algorithms is necessary to achieve scalability.

2.5 Type Checking

Two other areas of related work should also be discussed: the problgmeoéheckingtself, and
the problem of finding more precise types in type checked languages.

The problem of type checking is to verify that a program will not commit a type error when it
executes, i.e., that a program will not invoke an operation with arguments whose type is ighlid [
Type checkers rely on having a type associated with syntactic elements such as expressions, variable
declarations, and function declarations. Type checking has received an extraordinary amount of
attention from programming language research#&rs38, 46, 58, 9, 7], including the development
of the Strongtalk type checker for Smalltatkq]. Almost all type checkers rely on some amount
of type inference so that programmers do not need to write down a type for every expression in a
program. At the extreme are type checkers such as SMBkthat include a type inferencer so
thorough that the programmer typically needs to write down no types at all.

Type checking is a separate problem from the type-inference problem discussed in this disserta-
tion. A type checker may reject a program outright, while the type inferencers studied in the present
work must succeed on any program. Programmers using a type checker typically expect to modify
their program in response to issues identified by a type checker. To contrast, programmers using
a type inferencer (or a tool based on type inference) are seeking to find more information about

an existing program, and they will not necessarily change the program even if the tool points out

20

potential problems.

This difference results from a fundamentaffeience in the property proved by each tool. A
type inferencer must only find types that arect that is, large enough to include all values that
the associated syntactic element will hold when the program runs. A type checker must find types
that are additionally small enough that any operation the program applies to the associated syntactic
element is appropriate to the type. Since some programs do have type errors, it is inevitable that
a type checker must reject some programs. A type inferencer, meanwhile, can succeed on any
program; at worst it can assign a typefofything to everything in the program. In the extreme,
if a type inferencer analyzes a program that is certain to commit a type error when it runs, the
inferencer must still be careful to find correct types for the portion of execution preceding the type
error.

Another separate problem is that of improving the types that a type checker finds. For example,
given a variable in Java[)] that has an abstract Java interface type, one might wish to learn more
specifically which concrete classes the variable will actually hold at runtime. In many cases it will
not hold every possible class that matches the interface, and in some it will hold only one class.
Examples &orts are those of Tip and Palsberg in 2080][and Wang and Smith in 2007 ().

Since such algorithms start with the reasonable types and call graphs given by the language, they

solve an easier problem than the present one.

2.6 Knowledge-Based Systems

Knowledge-based systenasso calledexpert systemgprovide a general theory for the present area
of enquiry. A knowledge-based system has an architecture with four componekiswiedge-
acquisition modulea knowledge baseaninpufoutput interface and aninference enging49. A
demand-driven type-inference algorithm follows this architecture.

The acquisition module of a knowledge-based system provides the initial information and in-
ference rules that the system may use. For a type inferencer, the acquisition module includes two
parts. First, it includes information about the particular program being analyzed. Such information
is provided through tools such as parsers and static semantic analyzers. Second, it includes infer-

ence rules particular to the type-inference algorithm. The acquisition-level information and rules

21

used byDDP are described i€hapter 4andChapter Gespectively.

The knowledge base holds the information from the acquisition module as well as information
inferred as the analyzer runs. This information can include control information such as what goals
the inferencer is currently pursuing. For a type inferencer, the knowledge base includes type judge-
ments and other control- and data-flow judgements that have been inferred about the program. The
judgementDP uses are described hapter 5

The inputoutput interface interacts with the user. Most type inferencers use a simple inter-
face that simply accepts questions from a user and then reports results. In general, however, an
inpuyoutput interface might interact with a user as it deduces information and might expend con-
siderable sophistication on the problem of explaining inferred results. Mr. Spidey is just such a
tool with a sophisticated interfac24]. The inputoutput interface foDDP is the Chuck program
browser described i@hapter 10

The inference engine repeatedly applies rules of inference to update the knowledge base. Typical
type inferencers use a simple inference engine that simply applies every available inference rule until
there are no more possible updates to the knowledge base. Adaptive demand-driven algorithms,
discussed above, are an exception: such algorithms have a variety of available strategies and choose
among those strategies in some fashion. The most interesting danPfs its adaptive inference

engine, described i@hapter 3andChapter 7

2.7 Semantics of Smalltalk

The formal work in this dissertation is based on a new description of Smalltalk’s semantics that is
detailed inChapter 4 It is worth reviewing a few existing descriptions and the new one’s relation to
them.

The earliest full description of Smalltalk semantics appea&nmalltalk-80: The Language and
Its Implementationby Goldberg and Robso29], often referred to athe blue bookIn addition to
a lengthy informal description and rationale, the blue book includes a complete interpreter written
in the language itself. Most early semantics of Smalltalk refer to the blue book’s definition of the
language.

Unfortunately, the blue book’s description does not give blocks the full semantics of closures. It

22

defines blocks without temporary variables at all. Later implementations of Smalltalk include full
closure semantics including reentrant blocks and nested mutable variables. However, all semantics
that mimic the definition of Smalltalk in this book must necessarily use a limited definition of blocks.
Nested mutable variables are a ubiquitous feature of modern Smalltalk implementations, and
accordingly they are required by the current ANSI Smalltalk stand@rd Unfortunately, they
add complexity to descriptions of the semantics and non-trivial requirements for correct program
analysis. Given these factors, the need to describe nested mutable variables is the most compelling
reason that a new semantics of Smalltalk is included in the present work.
Wolczko has developed a denotational semantics of Smallfdlkas part of a larger project
studying object-oriented semantics in geneird][His Smalltalk semantics describes a variety
of language features including not only the expected features such as objects, classes, messages
and methods, but also primitives (including three important examples) and arrays. Nevertheless,
in order to stay true to the blue book’s semantics, Wolczko begrudgingly omits nested mutable
variables from his Smalltalk semantics. His paper describing Smalltalk semantics includes a number
of comments on the lack of nested mutable variables and other limitations of blocks from the blue-

book specification. For example, Wolczko writes:

The absence of temporary variables from blocks was a curious omission in the design

of Smalltalk. Later we shall meet other strange features of blo@i$. [

Wolczko’'s Smalltalk semantics consistently avoids a general description of nested temporary
variables. Instead, he suggests treating nested temporary variables as syntactic sugar, a language
feature that is unimportant semantically and can be interpreted by rewriting all uses into features
that do exist in the low-level semantics. Wolczko describes two techniques for rewriting Smalltalk
blocks that access non-local variables: fixing the values of non-local accesses at the time a block
is evaluated into a closure, and replacing mutable variables by non-mutable variables that hold a
reference to a mutable cell of memory. The combination of these rewritesféesu to capture
the semantics accurately, albeit indirectly. This rewriting approach is a good fficie @ project
whose purpose is to focus on the specifically object-oriented parts of the language semantics.

The present work has aftirent purpose: studying data flow in Smalltalk. Since assignments to

23

Table 2.2: Core of Abadi and Cardelli's theory of objects

ab:= terms

X variable

[lo = ¢(Xo)bo, ...,In = ¢(X)by] oObject formation

al field selection or method invocation
al ¢(X)b update of field or method

temporary variables are a common and tricky mechanism for data flow, it is imperative to describe
nested mutable variables at some level in the associated theory. The present work elects to describe
nested mutable variables directly at the level of the semantics. This approach requires a somewhat
more complex description of the semantics, but in return, it removes the need to add additional lem-
mas and mathematical structures at a higher level to accurately describe data flow through nested
temporary variables. Further, it results in a simpler correctness theorem whose statement is closer
to the language semantics. Additionally, some language features, including arrays and most prim-
itives, have straightforwardfects on data flow analysis (the present work conservatively analyzes
flow through arrays), and a new semantics is an opportunity to remove those features that, for our
purposes, provide more of a distraction than an elucid&tion.

Abadi and Cardelli have also developed a general theory of object-oriented senmnfitefr
theory is tuned for discussion of static type systems for object-oriented languages. They discuss
a number of static-type issues such as subclassing versus subtyping, types for class-based versus
object-based languages, self types, universally and existentially quantified types, and covariant typ-
ing. As with Wolczko’s semantics, Abadi and Cardelli’'s choices are appropriate for their purpose
but cause dficulties for developing the theory behind a data-flow algorithm. The syntax of Abadi
and Cardelli's core language is givenTiable 2.2 Notice that methods and fields are treated equiv-
alently. The language thereby allows copying of methods from one object to another, a powerful
feature normally reserved in a language for reflective development tools. On the other hand, higher-
level constructs such as classes, inheritance, and blocks (lambda abstractions), are left out of the
core language and left to be treated as syntactic sugar. These choices work well for Abadi and

Cardelli’'s expressed purpose of studying object-oriented semantics and the associated static type

50f course, the implementation must correctly support these features even though the theory ignores them. The details
are given inChapter 9

24

systems. However, for the present purpose, the theory is simplified if extremely powerful features
like method update are removed while higher-level features important to analysis are described

directly.

25

CHAPTER 1l

DEVELOPING A NEW ALGORITHM

The problem concerning the present work is to infer types in large programs, particularly as an aid
to program-understanding tools. Given the existing work on the problem, how should one proceed?
This chapter develops a new type inference algorithm to address this problem. The algorithm is not

yet described in full; some details are left f©hapter GandChapter 7

3.1 Observations

Consider a few observations from the existing published work and on the nature of the problem
itself. These observations point the way forward to an algorithm more likely to solve the stated
problem.

First, observe that existing context-sensitive algorithms do not scale to larger programs. Even
0-CFA has dificulty with 50,000-line programs3g]. CPA and the k-CFA's become impractical at
even smaller sizes. If one wants to analyze programs with hundreds of thousands of lines of code,
then one should seek some fundamental change from the existing published algorithms.

Second, note that within any realistic large program, there are many type inference questions
that are easy to answer. If nothing else, the types of literal expressions are easy to derive. For
example, the type oé2 is clearly something lik&nteger—it does not matter where th& is
embedded in some large program. Additionally, realistic programs tend to have many variables
where some short investigation can find a type. For example, if a vaitalbkeonly assigned one
value in the program, and that value is a literal, then the tygeia$ the type of the literal. If one
wants a useful algorithm, then one should seek an algorithm that can at least find answers to the
easy questions.

Likewise, in most realistic large programs, there are type inference questions that are imprac-
tical to answer. Consider the argument of a method nanned # There are many hundreds of

expressions that send the messagew#, and deciding the type of the argument to the method

26

requires coping with all of those expressions in some fashion. For at least s@me ethods,

this is likely to be impractical in a shiciently large program. Therefore, if one wants a scalable
algorithm, one should seek an algorithm that can give up at some point instead of tilting at every
windmill indefinitely.

Finally, there are precise type inferences that do not require precise types at every step of
the derivation leading to the final inference. For example, consider an expressiomdigex"
matches: someString”. To find the type of the expression, the inferencer will find a type for
regex and then analyze each method that, based on that type, might be invoked by the statement.
However, it might not matter whetheegex is determined to be precisely the set of regular expres-
sion classes, or the ultimately impreciagything type; in either case, the inferencer will find that
allmatches: methods may be invoked, and thus it will find the same type for the expressigax
matches: someString”. Because of such scenarios, a type inference algorithm can give up on
subproblems without necessarily losing precision in the final answer. If giving up appears to be
necessary, the inferencer should at least attempt to give up on subproblems before giving up on the

main problem posed to the inferencer.

3.2 Approach

The previous observations lead to several ideas for building a scalable and useful algorithm.

One general idea is that the algorithm could spend some resources searching for an answer and
then give a trivially correct answer if none can be found before the allocated resources are exhausted.
This general approach implies that easy questions will be answered well, witelltliquestions
will be answered poorly but in reasonable time.

For this approach to beftective, it should be possible to use #eient strategy on each ques-
tions that has been posed; otherwise, if any one questiofiitutti the algorithm would be forced to
give up on the entire program. demand-driveralgorithm has the necessary property. A demand-
driven algorithm answers each question individually, thus gaining has the flexibility to choose a
different strategy for each question.

A natural refinement is to allow the algorithm to give up on individual subgoals instead of just

on the initial posted goals. This way, the algorithm can give precise types to an additional number

27

of queries: those queries that have expensive subgoals that do not influence the final result. This
refinement is callegruning subgoalsA goal is pruned by giving it a trivially correct answer, thus
ensuring that the goal needs no subgoals.

In order to support subgoal pruning, the goals of the demand-driven algorithm must be formu-
lated carefully. For a goal to be prunable, it must admit some answer that is definitely true, and that
answer must be quickly computable—ideally, in constant time. For example, the goal “what is the
type ofx?” is prunable, because one can answer “x is of pething.” On the other hand, one
cannot prune the goal “summarize théeets of calling methoa, and update all goals to account
for those dects”.

This approach could be summarized by framing the problem as a knowledge-based system
(KBS) [49] and then using a non-trivial inference engine. The propositions the KBS processes
are data-flow judgements; the goals of the KBS are the same as the goals of this approach; the
inference rules of the KBS are justification tactics; and the non-trivial inference engine continually

chooses for each goal whether that goal should be pruned or pursued further.

3.3 The DDP Algorithm

TheDDP algorithm uses the approach described previously. It is demand-driven, and it prunes sub-
goals. This section gives the overall structuréd@P. Later chapters elaborate on several details.

The overall algorithm, summarized gure 3.1 is a standard demand-driven algorithm mod-
ified to sometimes prune goals. goal is a question the algorithm is trying to answer. Every goal
being pursued by the algorithm has a tentative answer to its question. As the algorithm progresses,
those answers are repeatedly adjusted.

The standard part of the algorithm is that there is avaklist holding a set of goals that need
to be updated. The algorithm repeatedly removes a goal Wwonklist and updates its answer.
If the answer actually changes, then any goals depending on the updated goal are added back to
worklist for future consideration—this way, tentative answers to goals can be updated in light of
new information whenever the subgoals they depend on are given new answers. The algorithm
terminates wheworklist is empty and thus all relevant goals are consistent with their subgoals. At

that point, all relevant goals have answers that are in fact correct.

28

procedure InferType(var)
rootgoal := typegoal(var)
worklist := { rootgoal }

while worklist # @ do
if pruner wants to run
then Prune()
else UpdateOneGoal ()

return GoalAnswer (rootgoal)

procedure UpdateOneGoal()
Remove g from worklist
changed := Update(g)

if changed then
deps := GoalsNeeding(g)
worklist := worklist U deps

procedure Prune()
for g € ChoosePrunings() do
prune g
worklist := Relevant(rootgoal)

Figure 3.1: The DDP algorithm.

29

The UpdateOneGoalfunction modifies the current answer of one goal to be consistent with
the answers to the goal’s subgoals. For example, it might change the answer of the goal from “x
is an Integer” to “x is an Integer or a Float”, in order to account for new information in the goal’s
subgoals. The functiotdpdate performs this modification, and it returns a boolean indicating
whether the goal’'s answer needed changing (it is possible that the update leaves a goal with the
same answer as before).

The precise behavior dfipdate is given in Chapter 6 Note, though, that if the goal being
updated needs new subgoals that do not already exist, then those goals are created, given a maxi-
mally precise answer (e.g., the empty type holding no values), and addexiikiist . If an update
causes a change to the goal’s answer, thpdateOneGoaladds all goals that depend on the goal
to worklist.

The modification from the standard demand-driven algorithm is that, in some iterations, the
algorithm callsPrune and prunesgoals instead of updating a goal. T@&oosePruningsfunc-
tion chooses which goals should be pruned and is described further belmasePruningsis a
heuristic, and there are many possibilities for its specific behaviolChapter for some of them.
Whatever goals the function chooses are pruned by being given trivially correct answers, thus en-
suring that they require no subgoals. After the chosen goals are pmungdist is reset to hold
preciselyrootgoal plus all direct and indirect subgoals fotgoal.

To increase thefBectiveness of pruning, th@oalsNeedingunction should not return goals that
have become irrelevant due to pruning; otherwise, some pruning would essentially be undone. In
order to dficiently return this limited set, an extra sstmpletedcan be maintained. Trempleted
set holds those goals that have been updated and whose immediate subgoals have not had a change
in value. Whenever a goal is updated, it should be addembtapleted and whenever a goal is
added toworklist, it should be removed fromompleted Thus, as the algorithm progresses, goals
that are relevant move back and forth betweempletedandworklist, always being in at least one
of them. Goals that are irrelevant due to pruning are removed from both set&oeteNeeding

function can then return only goals which are present in ettberpletedor worklist .

30

3.4 An Example Execution

This section traces one execution@DP, in order to clarify how the general algorithm works. The
example execution analyzes a program that includes the cdeigufe 3.2 among a great deal of

other code that is not listed.

e ClassA, methodfoo:, is:

foo: pl
X « Y.
X doStuff.
X « pl.
X doMoreStuff.
"X

e ClassA, methodbar, is:

bar
Y « 10.
Y

e ClassA, methodbaz, is:

baz
| s |
s « self.

s foo: Y.
"s

e ClassA, methodextraneous, IS:

extraneous
Q « 10.
Q foo: Q.
"Q

Figure 3.2: Code for example execution. The relevant methods of some large program are listed; it
is assumed that a great deal of other code is also present in the program. The syntax is Smalltalk;
the details are described @hapter 4 In agreement with the Smalltalk convention, all uppercase
variable names refer to global variables.

The figures showing the progress of the algorithm shovktimsvledge basef all relevant goals.

31

An example goal is shown iRigure 3.3 On the left is the question the goal attempts to answer:
What is X?0n the right is a tentative answer to that question: the Bitom a type designating
thatX is never assigned a value. The center box inside the goal is empty. If it instead were marked
with a J in the middle, then that goal would be justified with respect to its immediate subgoals.
Since it does not have R this goal needs more work.

The worklist of DDP is not shown explicitly in the diagrams. Instead, the worklist consists
of those goals that are not justified and thus are not marked withla simplify the figures, the
ordering of the worklist is not shown; it is irrelevant for the important aspecBQd?.

The algorithm begins dsferType is called with argumer. The algorithm inserts a type goal
for X into the knowledge base, arrivingRigure 3.3 Notice that whenever a new goal is created, it
is given an initial answer that is extremely precise, e.g., typan answer which is almost certainly
overly specific. That answer will be broadened as the algorithm progresses.

Suppose that the algorithm proceeds to BatlateOneGoal instead ofPrune for several itera-
tions. The first goal it chooses to update must be the one for the tyfidipflate in this case will
find all statements that modif§;. In this case there are two, and the algorithm creates a subgoal for
each one of them. Then, the algorithm updates the typetofaccount for the current answers in
the subgoals; since the subgoals are newly created, they still have answets afi, and thus the
type ofX is also left aBottom. The root goal is marked as justified, arriving=agure 3.4

The algorithm must now choose a new goal to update. It can choose ®itherl. Suppose it
choosed. There is only one statement in the program that mod¥fjemd it assigns the literal
to the variable. Thus, the type ®fis preciselyInteger.! The algorithm updates the answefits
type goal. Since this type is a change from the old type Box.tom, the algorithm also marks as
unjustified all goals that depend on this type goal (i.e., it puts those goals back on the worklist). In
this case, the only goal depending ¥a type goal is the root goal. The execution state arrives at
Figure 3.5

The algorithm might now choose to update the root goal. The same analysis is repeated from the

first time this goal was updated, but now instead of creating new goatséndp1, the algorithm

For simplicity, this example ignores the fact that in Smalltalk all variable bindings fldvhen they come into
existence.

32

can reuse the goals that already exist. The algorithm updates the answer to the root goal to be
“Integer or Bottom,” which, sinceBottom is empty, is the same as simplyrfteger”. The root
goal is then marked as justified. Since there are no goals depending on the root goal in this example,
there are no other goals to mark as unjustified. The execution state is summafzgare3.6

The algorithm might now update the goal fdr. To find the type ob1, which is a parameter, the
algorithm first tries to find all message-send statements that might invoke the parameter’s method, in
this case the fbo : method of class A. A new goal is created to try and find these send statements.
Initially, the goal’s answer is that no send statements in the program can possibly invoke the method,
and thudipdate concludes thapl is never assigned a value. The execution state is now described
in Figure 3.7

Suppose now that the algorithm decides to prune some goals; i.e., iPecalie instead of
UpdateOneGoal. Prune must choose some goals to prune. Suppose it chooses the newly created
senders goal for A's fbo : method. The goal is given a trivially correct, extremely conservative
answer, and all goals depending on the goal are marked as unjustified. After the pruning finishes,
the algorithm removes from consideration any goals no longer relevant to the root goal; in this case,
however, all goals are still relevant, because the single goal that was pruned had no subgoals. The
execution state is now describedrigure 3.8

There is only one goal to update, so the algorithm must choose to update the type gaal for
That goal must now account for all statements that might inws&foo : method. Human analysis
can show that one of the two statements actually calls some ofber:#nethod, but the senders
goal was pruned and thus does not have as precise of an answer as a human can find. The type goal
for p1 must then consider type goals for batandQ. A type goal forY already exists and is reused,
while a new goal must be created farThe execution state reaches that describdtgnre 3.9

The algorithm might then update causing no change except to m&k goal as justified,
reaching the state iRigure 3.10 The algorithm might then updae(Figure 3.1} and then update
pl again Figure 3.12. Since the type op1 did not change this time, there is no need to unmark
any goals as justified. Since no more goals need justification, the algorithm terminates.

At this point, all goals within the knowledge base are justified with respect to each other. The

justification rules are such that all goals must, in this circumstance, have correct answers. Thus the

33

root goal’s answer is correct, and a correct typexfig Integer.

34

What is X? Bottom

Figure 3.3: Example: The initial state of the knowledge base. There is one question, “V\A#{ is
and it has a tentative answer, Bottom.

What is X7? J Bottom
What is Y? Bottom]
[What is p1? Bottom

Figure 3.4: Example: The root goal is updated. It now has two subgoals. Since the root goal's
answer is consistent with all of the goal’s subgoals, the goal is marked as justified.

What is X7 Bottom
What is Y? [Integer]
[What is p1? Bottom

Figure 3.5: Example: The type goal fof is updated. Since the root goal depends on the type goal
for Y, the root goal is no longer justified.

35

What is X? Integer

/

What is Y? Integer]

[What is p17? Bottom

Figure 3.6: Example: The root goal is updated again. It is now consistent with its subgoals, and so
it is marked again as justified.

What is X?] Integer
[What is Y?] Int:g{]
[What is p17?] Bottom
[Who invokes A.foo: ? No S@ts

Figure 3.7: Example: The goal fop1 is updated. Sincpl is a parameter of methad foo:, the
algorithm must find the senders df foo: in order to find the type op1.

What is X? Integer
J
What is Y? Integer
J
[What is p1? Bottom
Who invokes A.foo: ? [s foo: Y] and
J [Q foo: Q]

Figure 3.8: Example: The senders goal is pruned. The goal now hasfiaisatly conservative
answer that no subgoals are required.

36

What is X? Integer
What is Y? Integer
J
What is p1? Integer
J
Who invokes A.foo: ? [s foo: Y] and
J [Q foo: Q]
[What is Q7 Bottom]

Figure 3.9: Example: The goal fop1 is updated again. Two new subgoals are required, and the
root goal is no longer justified. Notice that the existing goaltfis reused.

What is X? Integer
J
What is Y7 Integer

J

What is p17? Integer

J
Who invokes A.foo: ? [s foo: Y] and
J [Q foo: Q]
[What is Q7 Bottom]

Figure 3.10: Example: The goal for X is revisited. Its answer needs no change.

37

What is X? Integer

J

What is Y? Integer

J

[What is p1? Integer]

Who invokes A.foo: ? [s foo: Y] and
J [Q foo: Q]
[What is Q7] Integer]

Figure 3.11: Example: The type goal fay is updated.

What is X? Integer
J
What is Y? Integer

J

What is p1? Integer

J
Who invokes A.foo: ? [s foo: Y] and
J [Q foo: Q]
[What is Q7] Integer]

Figure 3.12: Example: The goal fop1l is updated again. All goals are now justified, so the algo-
rithm terminates.

38

3.5 Properties of the General Algorithm

The DDP algorithm has several nice properties. First, the time of execution appears to depend
mostly on the number of goals analyzed and the number of times they are updated. It does not
appear to depend much on the size of the program. Therefore, assuming these intuitions are correct,
the algorithm should complete quickly whenever the number of nodes is restricted, even if the
analyzed program is large.

Second, the algorithm finds many short type derivations where possible. One-step derivations,
such as the type of a literal expression, are clearly founBDf. Additionally, if a short multiple-
step derivation happens to fit within the goals that are not pruned, theDDifewill find that
multiple-step derivation as well. Note that this includes multiple-step derivations for which some
of the subsidiary judgements are not precise. Overall, there are several case®DRdirds a
precise answer to a type query, and when it cannot find a precise answer, it will give up in reasonable
time.

Finally, DDP can be tuned to use more or leskoe. By pruning more severely, the algorithm
should finish more quickly. By pruning less severely, the algorithm should finish with better results.

Thus, the severity of pruning provides a knob on the algorithm which trades speed for precision.

39

CHAPTER IV

MINI-SMALLTALK

This chapter begins the formal description of DBP algorithm. This chapter defines the syntax
and semantics dflini-Smalltalk the language analyzed by the formal versiom@fP. Adaptation

of DDP for the full Smalltalk language is described@hapter 9

4.1 Overview

The present work defines a semantics tuned for giving an accurate description and a proof of cor-
rectness of the more interesting parts of the type-inference algorithm. Since Smalltalk has such a
simple semantics, it seems worthwhile to spend a few pages describing a semantics tuned for the

present purposes in exchange for simplifying the rest of the work. This semantics includes:

e The essential parts of a class-based, object-oriented language, including classes, objects, mes-

sages, and methods.
¢ Single inheritance of classes.
¢ Blocks with full closure semantics.

¢ Nested mutable variables within blocks. This feature greatly increases the complexity of the
semantics and has thus been omitted from other authors’ analogs to Mini-Smalltalk. Since the
feature can introduce subtle errors into a program analysis, it is included in Mini-Smalltalk

despite the complexity it entails.

e Theperform: primitive, calledsendvar in Mini-Smalltalk, which allows invoking a method
with a computed name. This feature is non-trivial to support and also allows for subtle anal-

ysis errors.

Several features are omitted because they increase the complexity of the semantics but do not

provide new insight.

40

Arrays.

Primitive methods such as addition and inputput.

Processes.

Classes as full-fledged objects.

The implementation supports these features in straightforward manners desciliepter 9

Some reflective features are omitted because they are primarily intended to be used in the de-
velopment environment and because supporting them is beyond the scope of most program anal-
yses. Examples include the object-inspection tool that can modify objects in arbitrary ways, the
ability to reference instance variables by namiéngtVarAt : and #nstVarAt : put :), and the

thisContext facility for accessing the call stack.

4.2 Terminology

The terminology of this paper is carefully precise when discussing components of a message send.

It consistently uses the following terms:

A methodis a named body of code in some class. For example, if one evaRiates, then

the+ method in class Smallinteger will respond.

A receiveris an object that is being sent a message. In the expre3siont, the receiver is

the numbeB.

A selectoris the name of a method. In the expressior 4, the selector is the identifier.

A messageas a selector plus a complete set of arguments. In the expre3siort, the

message is+ 4”.

When discussing syntax, this paper uses Smalltalk terminology, thus keeping Mini-Smalltalk
syntax close to that of Smalltalk. For exampilck statemeris used instead dhmbda expressian
Onthe other hand, when discussing semantics, the paper uses common terminology of the semantics

literature. For examplelosureis used instead dflock

41

4.3 Language Overview

Mini-Smalltalk is a language that captures the essence of SmalBglkt[includes the Smalltalk
features used in application-level programming, but it does not include introspective features in-
tended for use by the compiler or debugger. It also includes soffezatices from Smalltalk that

simplify the theory without removing any power:

1. There are no compound expressions. Instead, there are sequences of simple statements that

use temporary variables to store intermediate results.

2. Distinctions among class, pool, and global variables are ignored. Instead, they are all treated
as global variables. The distinctions are unimportant for analysis because theyffenty a

visibility and otherwise have the same semantics.
3. Classes are not values. Instemely is a syntactic form.

4. There are no return statements (designated with T in Smalltalk). Instead, every block,
including the main block of a method, must include a variable to return and an indication of

whether the value should be returned from the current block or from the surrounding method.

4.4 Syntax

The abstract syntax of Mini-Smalltalk is givenkigure 4.1

A Mini-Smalltalk program consists of a set of global variables and a finite map from class
names talassesEach class has an optional superclass, a set of instance variables, and a finite map
from method names to methods. Each method has a block, calledaimeblockof the method.
Each block has a number of parameters, a number of local variables, and a number of statements.
When the block finishes executing, it returns a value either to the statement that invoked the block
or (non-locally) to the statement that invoked the surrounding method.

Each statement has one of the following forms:
e | := self. This statement assigns the current receiver to variable

¢ | ;= literal. This statement assigns a literal, suc@s 'hello world’, to a variable.

42

(program

(clas9

{method

(block)

(statement ::

(selectop

Program
globals: (labely =
classes:(abel) (clasg) =

Class
superclass:{(abel) jundef)
methods: (label) x {(method) =
instance variables(labely

Method(block)

Block
parameters{label) =
temporariesilabel) =
statements{statementx
returning: (label)
retFromMethod:(boolean

(labely := self

(labely := (literal)

(labely := (label)

(label) := new (label)

(label) := (block

(label) := send((labely, {(selecto}, {label) =)
(labely := sendvar({label), (label), (label))
(labely := beval({selectob, ({label *)

Selector
label: {label)
numargs:{integef

Figure 4.1: Abstract Syntax of Mini-Smalltalk

43

| :=1;. This statement assigns the contents of one variable to another variable.

| := new classnameThis statement instantiates a new object of the class natasshame

| .= block This statement creates a closure, just like a lambda expression in Scheme.

| .= send(rcvr, selector args. . .argm). This statement sends a messagetww. The expres-
sion requests that a method matchseectorwill execute, and it suppliearg; .. .argm as

parameters to the method.

e | := sendvar(rcvr, selectorvar args...argm). This statement also sends a message, but
the selector of the method to invoke is read freglectorvar This statement supports the
#perform : functionality of Smalltalk, although notice that in Mini-Smalltalk, the only way
to create a selector object is via a literal statement. There is no method in Mini-Smalltalk
to convert a string to a selector. The analysis assumes that the program does not use any
such feature that is present, just as it assumes the program uses no introspective debugging

features.

e | ;= beval(blockvar, arg;...argm). This statement reads a closure from the variable named

blockvarand invokes it.

As a matter of notation, an expression lif@.bar refers to thebar component ofoo. For
example, if

? = Program globalsg classesc

then®.globals= g and®.classes= c.

4.5 Concrete Syntax for Methods

The abstract syntax is convenient for mathematics but cumbersome for manipulation of large amounts
of code. A concrete syntax for methods is summarizefigure 4.2 The concrete syntax is more
convenient for the larger amounts of code given in examples and is closer to the syntax of full

Smalltalk.

44

{method

(headeb (block body)

(headep := <(unary selectop
| ((keyword (identifien) =
(block body := (“|"” (identifier) = “|")
((statement“.”)
2 ({identifier)
(statement := (identifier) « self

| (identifier) « (identifier

| (identifier) « (literal)

| (identifier) < new (identifier

| (identifiery « “[”(“ :” (identifien) = (block body) “]”

| (identifiery « (identifier) (unary selectop

| (identifiery < (identifier) ((keyword (identifien) +

| (identifiery « (identifier) perform: (identifier) (with: (identifier) =
| (identifier) < beval (identifier) (with: (identifier)) =

Figure 4.2: Concrete syntax for methods of Mini-Smalltalk
4.6 Valid Programs
A program® is avalid programif it has the following properties:

1. All variable labels are flierent from each other. This causes no loss of generality because
Mini-Smalltalk is lexically scoped. If two variables have the same label, then one or the other

may be renamed without changing the meaning of the program.

2. P.classesncludes a class UndefinedObject. That class has no instance variables, and it does

have a method with selectobé#It.
3. P.classesncludes two more classes Block and Selector which have no instance variables.

4. The class hierarchy is acyclic: no non-empty chaiswgerclassttributes will link a class

back to itself.

5. For all literaldit in literal statements, the class of the literal is includeg iclasses Formally,

lit_classefit) C #.classes

45

6. Everysend statement supplies the exact number of arguments that the statement’s specified

selector requires.
7. Every method has the same number of parameters as the method'’s selector requires.

Programs in this paper are implicitly assumed to be valid.

4.7 Literals

The precise forms that a literal may take are left unspecified, because those details have no impact on
the overall srtucture of the type inferencer described in this document. A funcsibriteral , de-
scribed insection 4.11is used to instantiate new literals as a program executes. Further constraints

on literals are described section 5.2

4.8 Method Specifications and Block Specifications

The semantics include two new structures that refer to elements of the program being executed:
method specifications and block specifications.

A method specificatiorefers to a method from the source program. Its attributes are:
¢ class name the name of the class to which the method belongs
e selector the selector of the method

A block specificatiomefers to a block from the source program. It specifies a method plus a
navigation path through the statements of the method to find a block at an arbitrary level of nesting.

Its attributes are:
e method the method specification for the method containing the block.

e statementnums a sequence of integers corresponding to statement numbers. An empty
sequence designates the main block of the method. A one-element sequedesifinates
the block created by thig-th statement of the main block (which must be a block statement).
A two-element sequence;[io] designates the block created by stateniendf the block

created in statement of the main block. Likewise for longer sequences.

46

Some blocks are nested within others, which gives rise to an ordering among block specifi-
cations: by C by, whenb; is nested withinb,, as described ifrigure 4.3 Additionally, block
specifications may be combined in a simple fashion, as descriltédure 4.4andFigure 4.5 Note
that Tps and Lps elements have been added in order to complete a lattice; such specifications are

meaningless and are included only to simplify the mathematics.

4.9 Functions Over Syntax

The setall blocks(®) includes all block specifications . It includes the blocks of the methods
of $, and it recursively includes any blocks in block statements within the set. The block associated

with block specificatiorbsin P is designatedlocky(bs).

4.10 Semantic Structures

This section defines semantic data structures used during the execution of a program.

A contourbinds a set of variables. All variable bindings are held in contours in order to support
mutation of variables by the various assignment statements that Mini-Smalltalk includes. A contour
is a finite map from labels to objects. A contour is referred indirectly vi@matour id or cid.

There are two distinguished contoumsi1CID, the contour of the distinguished objacil, and
GlobalsCID, the contour used to bind global variables.

An objecthas aclassthat names the object’s class, andwars _cid identifying the contour that

holds the object’s instance variables.

There are three kinds of objects:

e A normal objectwhich is created by eitherrsew statement or by a literal. The class of such

an object may be any class other than Block or Selector.

e A closureis created by a block statement. A closure’s class is always Block. It has two

attributes other than the usual ones for objects:

— sblockis the block statement in the statement that created the closure.

— outeris the activation (defined below) in which thBlockblock statement was executed.

This information is needed in the semantics of non-local returns and lexically scoped

47

BSO-NESTED BSO-TOP BSO-BOTTOM

(msl@l’) c (msl) bSC Tps 1psE bs

Figure 4.3: Comparison of Block Specifications

BSJ-SYM BSJ-DIFFMETH
bs, Li bs, = bss BSJ-TOP BSJ-BOTTOM ms # M
bs, LI bs = bss bsU Ths = Ths bsLl 1ps=bs (ms, I1) (M, 12) = Tps

BSJ-SAMEMETH
| =longest prefix(l1,12)

(msl) u(msly) = (msl)

Figure 4.4: Join for Block Specifications

BSM-SYM BSM-DIFFMETH
bs, Mbs; = bss BSM-TOP BSM-BOTTOM ms # M
bs, M bs, = bss bsr Tps = bs bSM Lps = Lps (mg, 1) M (M, 12) = Lps
BSM-DIFFBLOCK
azb BSM-NESTED
(msl@[a]@l1) N (Ms@[O]@I2) = Lps (msl)n(msl@!’) = (msl@l’)

Figure 4.5: Meet for Block Specifications

48

variable access.

e A selector objecis created by a literal statement where the literal specifies a selector. Selector
objects have class Selector and are distinguished byl#elandnumArgs They may have

no instance variables.

Selector objects and closures must always have a contour id that references an empty contour.
The distinguished objedtilObj is an instance of class UndefinedObject. Its contour id is
NilCID, which will always reference an empty contour.
An activationis the current state of execution for one closure or method. It is analogous to a

stack frame in a typical language implementation. An activation has the following attributes:
e block spe¢ a specification for the block that is executing
e pc, the index of the next statement in the block to execute
e caller, the activation that sent the message that created this activationdef

e outer, the activation where temporary variables from one lexical scope outward should be

looked up, omundef if there is no such activation
e receiver the receiver object to which the message was sent
e params cid, a label for the contour holding this block’s parameters

e temps cid, a label for the contour holding this block’s temporary variables

caller var, the variable into which the return value should be placed

A configurationis a tuple @ctivation contourg. The activationis either the currently active
activation or the value HALTED. The special value HALTED means that executioaltied either
because execution has completed or because there has been some dynamic error such as sending
a message to an object that does not understand it. In this semantics, execution never becomes
stuck—instead, execution enters the HALTED state and never leaves it.

The contourspart of a configuration tuple is a mapping of contour ids to contours. It holds the

current values referred to by all variables.

49

Not all objects are sensible to discuss for a particular program and configurati@idAbject
for a progran and configuratiorcfg must follow some additional restrictions. First, dassmust
name one of the classes¥ Second, itdvars cid must be among the contours ofg. Third,
the domain of the specified contour must be precisely the instance variables of the object’s class in
%, including instance variables that have been inherited. Finally, if the object is a closure, then the

activation of the closure’s block must be a valid activationffaandcfg.

4.11 Semantic Functions

This section defines the low-level functions upon which the semantics is built.

The setll objectqcfg) includes all objects in use in configuratiofy, andall _activations(cfg)
is the set of all activations that are accessible in configuratignThe two functions are mutually
recursive. The base cases are Hiht objectgcfg) includes all objects in the range of anyaif's
contours, anaill _activations(cfg) includes the current activation ofg. The inductive cases are
thatall objectqcfg) includes the receiver of any one of the activationsiin activations(cfg),
all _activations(cfg) includes theouter and caller of any activation inall _activations(cfg), and
finally all activations(cfg) includes the activation of any block objectafi objectdcfg).

lookup,(C, sel) looks up a method in a specified class, given the selector for that method. It

returns either a single methodwtdef£. It is defined recursively as follows:
e If sele domain(P.classefC].methody, then®.classefC]l.methodfsel.
e Otherwise, ifP.classefC].superclass= undef, thenundef.
e Otherwise]ookup,(P.classefC].superclassse).

The functioninst_ literal instantiates a literal. Its arguments are a syntactic literal and a config-
urationcfg. It returns an object and a new configuration. The new configuration is identical except
that a new contour has been added; the object’s contour id refers to the new contour. The new object
mustbe a new one; it must use a contour id that is previously unused.

The function

lookup _contour,(cfg, act label allowparam)

50

lookup _contour((act, cnt), act,, label, allowparan) =

if label € domain(cnf(act,.temps cid)])

thenact,.temps cid

elseif labele domain(cnf(act,.params cid)])
then (if allowparamthenact,.params cid elseundef)

elseif act.outer+# undef
thenlookup _contour,((act, cnt), act,.outer, label, allowparan)

elseif labele all _instvarsy(act,.rcvr.clas9
thenact,.rcvr.ivars cid

elseif labele #.globals
thenGlobalsCID

else undef

Figure 4.6: Looking up the contour that binds a variable labedct(cnt) is the configuration in
which to look up the variableact, is the activation in which to look up the variablabel is the
variable’s name, andllowparamspecifies whether the function should succeed if the variable binds
to a parametemllowparamis used to support parameters being read-only.

searches for the contour that binds a specified variable. The last parameter specifies whether con-
tours for parameters should be returned. The function is definEdjure 4.6

The functionread var(cfg,act,,label) returns the object that a specified variable holds in a
specified configuration. Note that the activation to read from is specified viacth@arameter.
While the semantics itself will always use the main activatiorcfof the generalized definition
of read_var will later prove useful for stating stronger invariants about variable contents. The
functionwrite var(cfg,label,objec) writes a new object into a variable and returns the resulting
configuration. Botlread var andwrite var are defined irFigure 4.7

The initial configuration fofP is denotedstepy(#). Likewise,step, () represents the program

aftern applications oktepto the initial configuration.

4.12 Initial Configuration

The semantics of Mini-Smalltalk will be described operationally. This section describes the initial
configuration for any particular program, and the next section describesghéunction which

moves one configuration to the next. The initial configuration is a tugdév@ation, contoursg)

51

cid = lookup__contoury(cfg, act,, label, true)
contour= cfg.contourgcid]

contoufflabell = read var(cfg, act,, label)

cid = lookup_contour,(cfg, act,, label false)
contour= cfg.contourgcid]
contours$ = contourgcid — contouflabel — objeci]
cfg = (act,, contours)

cfg = write var(cfg, label, objec)

Figure 4.7: Reading and writing variables

defined as follows.

Let startmethrepresent the start method of the program:

startmeth= lookup,(UndefinedObjectDoIt)

Recall that this method exists in any valid program.

There are four elements obntoursg:

contourg[NilCID] binds the instance variables B110bj. It is an empty contour.

e contourg[GlobalsCID] binds the global variables. It maps each of the labef8.giobalsto

NilObj.

e contours[cidparamd binds the parameters of the start method. Since the start method has no

parameters, this contour is empty.

e contoursg[cickempd binds the temporary variables of the start method. It maps each of the

labelsstartmethtemporariego NilObj.
The attributes o&ctivatiorn are as follows:
e block specspecifies the main block atartmeth
e pc=1

e caller = undef

52

outer= undef

receiver= NilObj

params cid = Cidparams

temps cid = Cidiemps

caller var = undef

4.13 Execution

Execution may now be defined, given the preceding definitions. Mini-Smalltalk execution is defined
as an iteration of atepfunction on the initial configuration, thus yielding a sequence of configura-
tions. This section definetep. Throughout this section, lefg consist ofactivationandcontours
and letcfg = step(P, cfg). Thus,cfg’ must be defined for an arbitrary progr&rbeing analyzed,
and an arbitrary configuratiasfg.

Trivially, if activationis HALTED, then thecfg = cfg. Otherwise, suppose that tpe of the
current activation is within the bounds of its statement array. That istééeémenbe the next

statement to execute:

statement

block statemen{activationpc]

where block

lookup _blocky(activationblock speg

and letactivation,c be the same aactivationexcept thapc has been incremented, i.e.

activationnc = activatior] pc — activationpc+ 1]

Let cfginc = (activationne, contoury. Then there are the following cases:

e If statements [l := self], then

cfg = write var(cfgnc, |, activationnc.receivel

53

If statements [l := literal], then let:
(litobj, contours;) = inst_ literal (literal, contour3

Then:

cfg = write var((activationnc, contours;), I, litobj)
If statemenits [:= 1], then let:
obj = read var(cfg, act,|’)

Then:

cfg = write var(cfgync, |, obj)

If statemenis [| := new clasg, then a new object is to be created. classis Block or
Selector, therefg is halted; closures and selector objects cannot be createdhvitbtate-
ments. Otherwise, choosewcidas a label not ircontours Let newcontourbe a contour
mapping the instance variablesadssto NilObj. Letnewobjecbe an object whose class is

classand whose contour isewcontour Let
contourseyw = contourgnewcid— newcontouy

Then:

cfg = write var((activationnc, contoursgey), |, newobjeck

If statemenis [l := blocK, then letdynblockbe a new closure whoddock speds an exten-
sion of activation,c.block specto specify the bloclblock and whoseuteris activationy.
Then:

cfg = write _var(cfgnc, |, dynblocR

If statements [l := send(rcvr, selectorarg; . .. arg,,)], then let:

rcvrobj = read var(cfgnc, aClinc, rcvr)
argobj = read var(cfgnc, actnc, argi), Vie l...m
method = lookupy,(rcvrobj.class selecto)

54

If methodis undef, then the method lookup failed and the machine halts. Otherwise, a new

activationactivationjieq is created for the called method with the following attributes:

block spec = (method[])
caller = activationne
outer = undef
receiver = rcvrobj
param cid = newcig
temp cid = newcid
caller var = |

wherenewcid, andnewcid are fresh labels. Latontougempsbe a contour mapping each of
methodtemporariesoNilObj, and letcontouparamsbe a contour mappingethodparameters

toNilObj for eachi € 1...m. Letcontoursggeq be contourswith these two contours added:

contourgajled =

contourgnewcig, = contouparams NEWCId — CONtOUkempd

The final configuration is then:

cfg = (activationgjeg, CONtOUrSjied)

e If statemenits [l := sendvar(rcvr, lse, arg; . .. arg,)], thencfg is computed as if the state-

ment were aend statement, with the exception that the method selector is:
read var(cfgnc, activationng, lse)

If the selector is not a selector object, thefg is halted. Otherwise;fg is as described for

send statements.

55

o If statemenits [| := beval(lp, arg; .. .arg,)], thencfg' is similar to that resulting from send
statement. Let:

dynblock= read var(cfgnc, actnc, Ip)

If dynblockis not actually a block, or if the number of arguments suppliedfiedint than
dynblockrequires, therfg is halted. Otherwise, look up the arguments, just as with a mes-
sage send:

argobj = read var(cfgnc, actnc, arg), Yie 1l...m

Create new labelsewcig, and newcid, and new contoursontouparams and CONtOUkemps

just as with asend statement. The new activatioactivatiorf, will then have the following

attributes:
block = dynblock
contourid = newcid
caller = activationne
outer = blockvarouter
receiver = Dblockvarouterreceiver
parameters = argobj;
pc = 1
caller var = Ivar
Then:

cfg = (activatior, contourgnewcid— contougaied], heap globalg

Finally, suppos@cis larger than the number of statements in the current activation. The current
block will return some value. Ldfet be the name of the variable that is to be returned. There are

two cases:

e Suppose the block returns values from the surrounding metatieigmMethods true). Then
let:

callact = outermost(activatior).caller

56

If callactis undef then execution halts. Otherwise, look up the object to return:
retobj = read var(cfgnc, aCtng, lret)
and write the appropriate variable and return to the calling activation:

cfg = write var((callact, contourg, cfgnc.caller var, retobj)

e Suppose the block returns values from the current blotiElomMethods false). Let:
retobj= read var(cfgnc, aCtinc, lret)

Then:

cfg = write var((actnc.caller, contours, actnc.outer var, retobj)

4.14 Various Semantic Properties

Lemma 4.1 (Semantic Sanity).Mini-Smalltalk semantics has many of the properties one would
expect. Several properties are listed below. For each of these prop@risesny programn is any

non-negative integeact € all _activations(step,(#)), andobj € all _objectqstep,(P)).
¢ Only the initial activation has ealler or acaller_var that isundef£. In particular:

actcaller = undef < actcaller var = undef

e Thepcof an activation either points within the range of its available statements or points one

past the end:

1 < actpc < len(lookup block(actblock speg.statemenis+ 1

¢ All contours are within theontoursof the configuration:

obj.cid € domain(step,(#).contourg
actparams cid € domain(step,(#).contourg

acttemps cid e domain(step,(#).contour9g

57

e The domain ofstep,(#).contourgobj.cid] is precisely the set of instance variables of the

object’s classpbj.class

e The class ofactreceiveris either the class namettblock specclass nameor a descen-

dent of that class.

e If act € all _activations(step,(#)) is an activation for a block other than a method’s main
block, thenact.caller is an activation whosepC— 1)th statement is Beval statement. Like-
wise, if actis an activation for a method’s main block, then the callgps< 1)th statement

is asend or sendvar statement.
e If actouter# undef, thenactouterreceiver= actreceiver
e If actblock specis the main block of a method, thexctouter = undef.

e If actblock specis not the main block of a method, thaotouter.block specis the block

immediately enclosingctblock spec
Proof. The proof is straightforward by induction on the number of execution steps. o

The following lemma claims that contour ids are unique, with only one class of exceptions.
The contour id used to reference an object’s instance variables, for example, is never used by a
different object and never used by an activation to refer to parameters or temporary variables. The
contour id used by one activation is never used by anoth@eptthat activations dfering only
by theirpc are considered the same activation d@fedtent stages of execution. This unfortunately
complicated exception allows activations themselves to be immutable, thus simplifying other parts

of the semantics. There is no need, for example, faxaivation id

Lemma 4.2 (Distinct Contours). In a given configuration, there is no contour id of an object that
is also a contour id for an activation. There is no contour id for twiedent objects. There is no

contour id for two activations thatflier by more than thejpcs.

Proof. The proof is straightforward by induction on the number of execution steps. Note that when-

ever thestepcreates a new object or activation, it uses fresh contour id’s. m|

58

Lemma 4.3 (Send History for Methods). Suppose thattep,(?) is not halted and that

act € all_activations(step,(?))

actoutermossender # undef

Then there is am < n and an such that under these definitions:

method = lookup meth(actoutermosblocK)
selector = methodselector
cfgn = stepy(®P) = (acty, cnty)
statementi = lookup block(acty.blocK).statement$)

statemeni is either asend statement with select@elector or asendvar statement. Istatemeny;

is asendvar statement, then it reads its selector from some varisddectorvarsuch that:

sobj= read var(cfgy, acty, selectorvay

wheresobjis a selector object fogselector The variable assigned tstatemen; is the variable
recorded imactoutermostaller var. Furthermore, the receivervr of thesend statement is such
that:

lookupy,(read_ var(cfgm, acty, revr).class selecto) = methogl

and each parameter has the value specified in the call statement:

vk : actoutermosparams = read_ var(cfgm, acty, argvar)

Proof. The proof is by induction on the number of execution steps. The lemma is trivially correct
for the initial configuration. Suppose it is true f&tep,_,(#), and it will be shown fostep,(P).

If the next statement to execute in configuratior 1 is asend or sendvar statement, then
all activations instep,(#) but one are also activations step,(#), disregarding changes fir’s.

For the solitary new activation, choose= n — 1 andi as the current pc frorstep,_;(#), and the

59

conditions will clearly be true. For all other activations, choose the samedi as was chosen for
each activation irstep,_1(?).

If the next statement islseval, then again there is only one new activation. For that activation,
choose the samm andi as was chosen for isuteractivation. For the other activations, choose the
samem andi as before.

If the next statement is notsend, sendvar, orbeval statement, then the new activations are a
subset of the old ones, and the sami®andi’s may be chosen for stapas for stegm— 1. Note that
no statement in Mini-Smalltalk may bind a parameter tofeedént object in an existing activation;

the only way to bind a parameter is to create a new activation. m|
Lemma 4.4 (Send History for Blocks). Suppose thagtep,(?) is not halted and that

act € all_activations(step,(?))

actouter # undef

Then there is am < n and an such that under these definitions:

step,(P) = (acty, cniy)

cfgm

statementi = acty.blockstatements)

statemenii is abeval statement. The variabld ockvar that it reads its variable from is such that:
blockobj= read var(cfgm, acty, blockvan

whereblockobjis a closure for bloclblock and outer activatiomctouter. The variable assigned
by statemeny; is actcaller _var. Finally, each parameter has the value specified inbtheal
statement:

vk : actparamg = read_var(cfgm, acty, argvark)

Proof. The proof is similar to that for the Send History Lemma for Methods. Induct on the number
of execution steps. The lemma is trivially true for the initial configuration. Suppose that it is true in

configurationstep,_, (%), and it will be shown that it is also true step,(P).

60

If the next statement to execute step,_ (%) is abeval statement, then there is one new
activation instep,(#). If actis that activation, choose the sameandi as was chosen for itsuter
activation. For the other activations, choose the samaadi as before.

If the next statement is gend or sendvar statement, then there is only one new activation, and
act cannot be that one becausetouter = undef. For all other activations, choose the samand
i as instep,_1(P).

If the next statement is neithebaval, send, nor sendvar statement, then choose the same

andi for actas was chosen istep,_,(?). i

61

CHAPTER V

DATA-FLOW ANALYSIS IN MINI-SMALLTALK

This chapter continues the formal descriptionDidP by describing a general framework for dis-
cussing data flow in Mini-Smalltalk. It defines variables and data-flow judgements, and then it

proves several useful lemmas about these structures.

5.1 Variables

The result of a type inference and the rules of justification for those results are defined in terms of
the static program and its variables; they are statements such as “this variable has this type”. The
correctness of those results is defined in terms of the dynamic behavior of the program; e.g. “this
variable has this type, in this configuration”. Yet, the semantics of the program are given in terms
of labels, not in terms of any concept of “variable”. Thus there is a disconnect between how the
algorithm results are stated, how the correctness criteria are stated, and how the semantics is stated.

This disconnect is bridged bxariables
5.1.1 Definition

Figure 5.1gives a summary of the four possible kinds of variables in Mini-Smalltalk. The meaning

of each kind should be apparent from its name.

(variable) Globalvar named{abel)

| InstanceVar ofClasgtabel) namedi{label)

| Parameter ofBlockblock spe¢ named{label)
| TemporaryVar ofBlock{block spe¢ named{label)

Figure 5.1: Variables

62

5.1.2 Variables found Dynamically

The semantics has been carefully defined so that every activation is linked to the appropriate block
from the original program. Thus, every variable reference that occurs during execution may be
traced to the associated static variable from the program. To do this, an analyzer begins at an
activation and looks at the temporaries and then the parameters of the activation; if there are any
outer activations, then their temporaries and parameters are checked as well; if the label appears in
none of these activations, then the instance variables are checked. Finally, if none of these locations
binds the variable, the global variables are checked.

The functiondynamic bindings, defined inFigure 5.2 performs this search. Given any con-
figuration and an activation within that configuratia@lynamic bindings will find a binding map
describing the variables readable frawt. A binding map is a partial function whose domain in-
cludes a finite number of labels plus the special valwatod andblock. The binding map maps
each readable label to a variable describing the variable that will be read from if that label is read
from the specified activation. A binding map also mapshod andblock to the method and block

that are executing.
5.1.3 \Variables found Statically

Since Mini-Smalltalk uses lexically bound variables, static analysis can predict which variables
will be bound by each variable reference in the program. The funstigtic bindings, defined
in Figure 5.3 maps a block specification to a binding map. It finds variable bindings by tracing
through blocks, then class definitions, and finally the list of globals declared in the program.

A valid variable for a program® is one that is in the static bindings of some block of the
program, i.e.:

dblock _spec: 3l : var = static_bindingsy(block speg|l]

The functionbound stats may be used to enumerate the statements of a program along with

variable information. bound_statq%) is a set of tuples of statements and binding maps. It is

63

actouter = undef
block spec= actblock spec
meth spec= block specmeth spec d...0p = domain(cntGlobalsCID])
Ykel...p: gk = (GlobalVariable namedy) i1...1qg = domain(cntfactrcvr.ivars_ cid])
¥Ykel...q: iv = (InstanceVariable ofClasactrcvr.classnamed:y)
p1...pr = domain(cnfactparams cid])
Ykel...r: pk = (Parameter ofBlockblock spec named;py)
t;...ts = domain(cnfacttemps cid])
Ykel...s: ty = (TemporaryVar ofBlockblock spec namediy)
bindingg = [method — meth spe¢ block — block sped
bindings = bindings[g1 — gvi, ..., gp — 9V

bindings = bindingsg[iy — ivy, ..., iq = iVq]
bindings = bindings[p1 — pw, ..., pr = pv]
bindings= bindingg[t; — tvy, ..., ts — tvg]

bindings= dynamic_ bindings,((topact cnt), act)

actouter # undef
block spec= actblock spec B...pr = domain(cnfactparams cid])
Ykel...r: pk = (Parameter ofBlockblock spec named:py)
t1...ts = domain(cnfacttemps cid])
Ykel...s: tw = (TemporaryVar ofBlockblock spec namediy)
bindingsuter = dynamic_ bindings,(cfg, actouter)
bindingg = binding$ute{block — block spegd
bindingg = binding[p1 — pvi, ..., Pr — pv%]
bindings= bindingg[t; — tvi, ..., ts — tvg]

bindings= dynamic_ bindings,((topact cnt), act)

Figure 5.2: Dynamic Variable Binding

64

block spec= BlockSpec methodSpemethod spec statementNums: []
method spec= MethodSpec classNamelass selector:selector
method= lookup_meth,(method speg
method= Method block:block
block = Block parametersparams temporariestemps statementsstats
= Program globalsglobals classesclasses
01...0p = globals
Ykel...p: gk = (GlobalVariable namedj) i1...iq = all_instvarsp(clasg
Ykel...q: iv = (InstanceVariable ofClasslass named:)
p1...pr = params VYkel...r: pw = (Parameter ofBlockblock spec named:py)
t1...ts=temps Vkel...s: ty = (TemporaryVar ofBlockblock spec namediy)
bindingg = [method — meth spe¢ block — block sped
bindings = bindings[g1 — gvi, ..., gp — 9V

bindings = bindingsg[iy — ivy, ..., iq = iVq]
bindings = bindings[p1 — pw, ..., pr = pv]
bindings= bindingg[t; — tvy, ..., ts — tvg]

bindings= static_bindings,(block spe¢

block spec= BlockSpec methodSpemethod spec statementNumsnums
snums= append’snums snun)
block = lookup__blocky(block speg
block spe¢ = BlockSpec methodSpemethod spec statementNumssnums$
block= Block parametersparams temporariestemps statementsstats
p1...pr =params VY kel...r: pw = (Parameter ofBlockblock spec named:y)
t1...ts=temps Vkel...s: tw = (TemporaryVar ofBlockblock spec namedty)
bindings = static_bindings,(block spec)
bindings = bindings[p1 — pvi, ..., pr — pv]
bindings = bindingg[t; — tvy, ..., ts — tvg]
bindings= bindingg[block — block speg

bindings= static_ bindingsy(block speg¢

Figure 5.3: Static Variable Binding

65

defined as the smallest set satisfying:

bse all _blocks(P)
state blockp(bs).statements

bindings= static_bindings,(bs)

(stat bindingg € bound_ statq%)
5.1.4 Lemmas About Variables
This section proves a few useful properties about variables.

Theorem 1 (Lexical Binding of Mini-Smalltalk). For any progran, for any configuration cfg

step,(?), and for any activation act all _activations(cfg):
dynamic_bindingsy(cfg, act) = static_bindingsy(actblock speg

Proof. The proof is by induction on the number of steps of execution.

In configurationstep,(#), the property is straightforward to show by a case analysis. Consider,
in turn, labels for the temporary variables of the start method, the parameters of the start method,
the global variables, and labels that are none of these. The static and dynamic binding of the labels
are the same in each case.

Suppose then that the property is truestep,(#); it must be shown that it is still true in
step,,1(?). To avoid triviality, suppose that neither configuration is halted.

If step,(P) executes &end or sendvar statement to reacstep,,,(?), then there is precisely
one new activation istep,, (%), disregarding changes pr's. As with the argument in the initial
configuration, it is straightforward to show that the property holds in this new activation.

Suppose then thatep, () executes deval statement. Again, there is one new activation, but
now the new activation has anuter activation. Consider any labél If | is a temporary variable
or parameter of the new activation, then it is straightforward to show that the static and dynamic
bindings are the same. Otherwise, the dynamic bindidgrothe new activation is the same as the
dynamic binding of in the new activation’s outer activation. Further, the static bindingiothe
new activation’s block is the same as the static bindinginfthe activation surrounding the new

activation’s block. By the Semantic Sanity Lemma, the block of the outer activation, must be the

66

same as the outer block of the new activation. Thus, by the inductive assumption, the static and
dynamic bindings of the new activation must be the same.

If step,(#) executes some other statement, or returns from a block, then there are no new acti-
vations instep,(P).

Thus in all cases, the property remains trusteq,, (?). m|
The following lemma shows that the same contour is never used to Hiededlit variables.

Lemma 5.1 (Unshared Contours).Suppose thatfg = step,(#), thatact; andact are among

all activations(cfg), and that is any label for a variable readable in battt; andact. Then:

lookup__contoury(cfg, acty, |, false)
= lookup_ contoury(cfg, act, |, false)
= dynamic_bindingsy(cfg, act;)[l]

= dynamic_bindingsy(cfg, act)[l]

Proof. The proof is by induction on the number of steps of program execution. In the initial config-
uration, there is only one activation, and the proof is trivial. Suppose, then, that the statement is true
in step,(#); let us show that it is true istep,,,(#). Assume, to avoid triviality, thatep,, () is
not halted.

If the statement to execute issend or sendvar statement, then there is one new activa-
tion in step,,1(#) that was not present istep,(#). Supposeact is the newly created activa-
tion, andact is some other activation. The activatiact; has a newly created contour, and
lookup__contourp(cfg, acty, |, false) must be that contour becauaet; has no outer activation.
On the other hand, the contdookup _contour,(cfg, act, |, false) must have existed istep,(P).
Thus, the two contours cannot be the same, and the desired statement is vacuously true. Likewise if
act is the newly created contour. dict; = act, then the proof is trivial. If neitheact; noract is
the newly created activation, then the proof is by the inductive assumption.

If the statement to execute isbaval statement, then again there is one new activation cre-

ated and one new contour. Suppose theti is the newly created activation; the other cases

67

need no further attention. Ibokup_contoury(cfg, acty, |, false) is the newly created contour,
then the statement is vacuously true. If it is some other contour, then it must be the same as

lookup_contour,(cfg, acty.outer, |, false). Thus,
dynamic_ bindingsy(cfg, acty)[l] = dynamic_bindings,(cfg, act;.outen|l]

Sinceact;.outer is an activation that was presentstep,(#), the inductive assumption gives the
desired property.
All other statement types do not create any new activations, and thus the inductive assumption

is already strong enough to give the desired property. m|
5.2 Types
A typeis a set of objects. Types DDP must be in one of the following forms:

¢ [C is theclass typecontaining all objects whose class is nanizd

e S|s, m is theselector typecontaining selector objects whose labes snd whose number of

arguments isn.

e Bbdcix is the block typecontaining all closures created by the statement specifiedsby
whose outer activation matches contett Contexts are defined in the next section; types

and contexts are defined with mutual recursicm.must not beL ., the empty context.

e Xtsis asum typevheretsis a finite set of the above kinds of types. It includes all objects that

are included in any of the elementstef

1 is theempty typethe type including no objects.

T is theuniversal typethe type including all objects.

Additionally, the notatiorfC]™ is shorthand for a “class cone type” which includes all objects
that are members o€ or a subclass of. It is only well-defined in the context of an implicitly

understood prograrR. Formally,

IC" =Z{IC]|C" =C or C’inherits fromC}

68

Notice that subtyping is separated from subclassir@DP. The typejintegef is nota subtype
of [Numbe}. The typefNumbe} includes only those objects whose class is exactly Number, not
whose class is Number or a subclass of Number. In other wiidsnbe} and [Numbe}® are
different types.

Types may be compared with tiseibtyperelationship defined ifrigure 5.4 The relation is
defined such that whenever C t, andobjectis a member ot, thenobjectis also a member
of t,. Additionally, types may be combined using theandri relations defined ifrigure 5.5and
Figure 5.@espectively. Asection 5.&hows, these relations define proper join and meet operations.
Further, a review of the definitions is enough to see that if an object is intbathdt,, then it is
also inty M to.

The functionlit _type returns a type for a literal. Its details are left unspecified,libuttype
must be compatible witmst_literal : the object created bipst literal (lit) must be an element of
typelit type(lit).

lookup*,(type selecto) is the set of methods that may respondédectoris sent to an ob-
ject of typetype It is the set containing, for each clasiessof any object intype the method

lookupy(class selecto).

5.3 Dynamic Context

In general, better results can be obtained for the type of a message-send expression if the responding
methods are analyzed multiple times, once for each possible combination of argument types. Such
a combination of argument types fornmcantext Formally, a context is a functiorctx(act, cfg) is
true whenever the contextx matches the activatioact that is part of configurationfg.

The largest context used in this papefTigx, a context matching any activation. The smallest
context isL¢, a context matching no activation.

The only non-trivial kind of context used in this paper iparameters contextA parameters
context specifies a block, a type for the method receiver, and a complete function from parameter
variables to types. This function must only map a finite number of parameters into types other than

T. A parameters context is written like this:

< (bg) self : [Smallintegef anInteger : [LargePositivelnteggr>

69

TO-REFL TO-TOP TO-BOTTOM

tcCt tC T 1Ct
TO-BLOCK-CTX TO-SUM-R
ctxy C Cbo TO-BLOCK-CLASS TO-SELECTOR t ets tct
Blbdct, C BIbYctx, Blbgctx E [BlocK Sis, m C [Selectoy tC2ts
TO-SUM-L
Vi ets:t'Ct
2isCt
Figure 5.4: Subtyping
TU-SIMPLES
LWiZt tbZt
TU-SUB1 TU-SUB2 t1 is a class, selector, or block type
t1C 1t bCt ty is a class, selector, or block type
hut =1t iUty =11 t Uty = X{tg, to}
TU-MIXED1 TU-MIXED2
t; is a class, selector, or block type ty is a class, selector, or block type
o = Zts hWiZty bt 1y = Zts 1 Z 1t b Zt
ts' = remove redundenciegtsuU {t1}) ts' = remove redundenciegtsu {t,})
ti Uty = 2ts t1 Uty = 2tg

TU-SUMS
1L = Ztg; b = 2t
ts = remove_redundeciegts; U tsp) t1Zt thZt1

iUty =2ts

Figure 5.5: Join for Types

70

This context is for bloclbs It assigns a type dEmallintegdrto the method receiver, and it assigns
a type of|LargePositivelnteggto the anInteger parameter. It assigns a type ofto all other
parameters.

A parameters context matches an activation in the expected way: the activation must be for a
block that is lexically within the specified block, the activation must have a receiver type that is a
member of the specified type, and each parameter in the activation—including those in lexically
nested scopes—must hold an object that is a member of the type specified by the activation.

Formally, the attributes of a context arex.bs, ctx.selftype andctx paramtypesFor shorthand,
howeverctself] refers to the typetx assigns to the receiver. Likewisgparam refers to the
type assigned tparam

Contexts may be compared to each other using the ruleggure 5.7 Wheneverctx, C ctx,
ctxy matches a subset of the activations ttiag matches. Two contexts may also be combined or
intersected, according to the rulesHigure 5.8andFigure 5.9 It is proven insection 5.8hatLi and
r define proper join and meet operations.

Note that when contexts for unrelated blocks are combinedwwithe resulting context iS¢
It would be possible to enrich the definition of contexts—by adding “sum contexts” as an analog to
sum types—nbut since the present analysis never considers such unions, the added complexity would
not be helpful. Intersection via, on the other hand, does match precisely the contexts matched by
both of two contexts that are intersected.

There are restrictions on the contexts actually useDDf; seesection 5.7elow for details.

5.4 Flow Positions

A flow positiondescribes locations that an object might be bound during program execution. It is

one of the following:

1. [: V var]« avariable flow positiondescribing the variablear in contextctx. ctx may not

be Lctx.

2. [: S meth:]c«, aself flow positiondescribing the receiver of the methotethexecuting in

contextctx. ctxmay not bel .

71

TM-SYM TM-SUBTYPE

LNty =13 Lt
oMty =13 Lnt=1t
TM-CLASS TM-CLASS-SELECTOR TM-CLASS-BLOCK
C1#Cy C # Selector C # Block
CdniCd =1 KCnSism =1 ICI N BlbYetx = L
TM-SELECTORL1 TM-SELECTOR2 TM-SEL-BLOCK
S1# S my # My I
Sfs1, My} 1M Sfsz, Mo} = L Sfs1, M} M Sfsz, My} = L SIs,m 1 BlbYctx = L
TM-SUM
Yt ets:t' Mt = m(t)
TM-BLOCK-DIFF TM-BLOCK-SAME t3 = I_I m(t)
bs, # bg Ctx M ctxp = Ctx tets
Bibstcty, M BlbSet, = L Bibdctx, M BIbdet, = Blbgcix Ztsmity =13
Figure 5.6: Meet for Types
CO-TOP CO-BOTTOM

CtX E Tctx Lctx E CtX

CO-PARAMS
ety =< (bs) ... > co =< (by) ...>
bs C bs Ctxy[self] C ctxp.[self] Yvar : ctxg[var] C ctxp[var]

Ctxg C ctxp

Figure 5.7: Comparison of Contexts

CJ-SYM

CtXo LI CtXy = CtXs CJ-TOP CJ-BOTTOM

Clxg L Ctxp = Clxg CtXU Tetx = Tetx CtXU Ltk = CtX
CJ-DIFF

ety =< (by) ... > o =< (by) ... > bs LIbs = Tps

CJ-PARAMS
ety =< (by) ... > o =< (by) ... > ctx=<(bg ... >
bs=bs U bs bs# Tps
ctx[self] L ctxo[self] = ctseld] Yvar . ctx[var] u ctx[var] = ct{var]

Ctxy LI Ctxo = Ctx

Figure 5.8: Join for Contexts

72

3. [X fs:], wherefsis a finite set of flow positions of the above kinds, istan flow position

No element ofs may be subsumed by another.
4. Ttp, theuniversal flow positionwhich includes all possible flow positions.

5. Lfp, theempty flow positioywhich includes no flow positions.

Some flow positions are completetybsumedby other flow positions. The rules for deciding
are given inFigure 5.10 Further, flow positions may be combined with the ruleBigure 5.11and
Figure 5.12 It is proven insection 5.&hatLI andr define proper join and meet operations for the

lattice of flow positions.

An objectobijectis included in a flow position in configurationcfg, where
cfg = (act, cnt) = step,(P)
if all of the following are true:
1. For all global variablesar that are valid forP,

cnfGlobalsCID][var.labell = object

= [[Vvar]y,Cf

2. For all valid instance variablegar and valid objectobject whose class is a subclass of

var.class

cnfobject.ivars cid][var.label] = object

= [Vvar]y,Cf

3. For allact € all _activations(cfg), and for all temporary variablegar that are defined by

act's block,

cnfacttemps cid][var.label] = object

= dctx: ctx(act,cfg) A [Vvar:]exC f

73

4. For allacte all _activations(cfg), and for all parametengr that are defined bgcts block,

cnffactparams cid][var.label] = object

= dctx: ctxactcfg) A [} Vvar:]uC f

5. For allact € all _activations(cfg),

actreceiver= object

= dctx: ctx(act cfg) A [S actblockmethod:]c C f

For brevity, flowpogqobject cfg) refers to the least flow position that includelsjectin cfg. The
calculation offlowposfor a particularobjectandcfgis straightforward: follow the above definition
for an object being in a flow position, and create a union of precisely the required flow positions and

no more.

5.5 Judgements

A data-flow algorithm process@sigementabout the behavior of a program. This section describes

the kinds of judgements th®XDP processes.
5.5.1 Type Judgements

A type judgementas the formvar ¢ type If ctx specifies a block, that block must enclose the
declaration ofvar. For example, ifvar is a global variable, theotx may not specify a block and
must beT . Similarly, a context may only assign a type to the receiver if the variable is a parameter
or a local variable; intuitively, there would otherwise there be no siaglef in scope.

The correctness criterion for type judgements is straightforward. A type judgemaregi type

74

CM-SYM

Ctxo M Ctxy = Cixg CM-TOP

Ctx M Ctx = Ctxs

CM-DIFF
ety =< (bsy) ... >

ctxnm Tctx = Ctx

CM-BOTTOM

CtXI_I J_(;tx = lctx

cto =< (bg) ...>
bsnbs =

Lbs

CtXq M Ctxo = Lotk

CM-PARAMS
ety =< (by) ... >
bs nbs, = bs
ctx[self] M ctx[self] = ctself]

o =< (bg) ... >

ctx=< (bg ... >
bs# Lps

Yvar . ctx[var] rnctx[var] = ct{var]

Ctxq M Ctxp = Ctx

Figure 5.9: Meet for Contexts

FO-VAR FO-METH
FO-TOP FO-BOTTOM ctxC ctX ctxC ctX
fCTh 1 f [: Vvar:]uwC [V var]y [S meth:]cx C [} S meth:]cw
FO-SUM-L FO-SUM-R
Vfefs: fCf’ Af'efd: fCf’
[Xfs:]Cf’ foc[Xfs]
Figure 5.10: Comparison of Flow Positions
fiz f; foz f;
f, is a variable or self flow position
fcf, f,Cfp f, is a variable or self flow position
fiufo=1H fiufo=1 flLIfzz[ZZ{fl,fz}Z]
fiz f; foz f; fiz o foz fi
f1 is a variable or self flow position f, is a variable or self flow position
fob=[X2fs] fi=[2Xfs]

fs = remove redundecieg{f;} U fs;)
fiufo=[XZfs:]

fi=[2Zfs:]

fs = remove _redundecieg{ o} U fs)
fiuf,=[Xfs:]

fb=[2Zfs:]

fs = remove redundeciegfs; U fsp)

fiufo=[Xfs:]

Figure 5.11: Join for Flow Positions

75

FM-SYM FM-SUBSUME FM-VAR

formfy=fs fic f, ctxy M ctx = ctx CtX# Lctx
fimfo=1fs fimfo=1 [Vvar e, N[V vare = [0 V var Jexncte
FM-VAR-DIFFCTX FM-DIFFVAR
Ctxg MCho = Lty var, # var
[Vvar e, MV var:]ey, = Lip [: Vvary Jewg MV var Jew, = Lp
FM-SELF FM-SELF-DIFFCTX
ctxy M ctx = ctx CtX# Loix ctxq Mcto = Leix
[S meth:]et, M[: S methi]ew, = [0 S meth:]exnctx [: S meth:]ey, N[S meth:]ey, = Lip
FM-SELF-DIFFMETH
meth # meth FM-VARSELF
[: Smeth Jc, M[: S meth e, = Lip [Vvar e, M[: S methi]ey, = Lp

FM-SUM
Vi efs: f' mfy=m(f")
fa=| | m(f)
frefs
[Xfsnfo=13

Figure 5.12: Meet for Flow Positions

76

is correct for configurationfgif:

¥ act e all _activations(cfg) :
ctx(act cfg) A var = dynlookup_ vary(cfg, act, var.label)

= read_var(cfg, act, var.label) € type

Thatis, for every activation matched bixand in whichvar may be read at all, reading the specified

variable gives an object includedtype
5.5.2 Simple Flow Judgements

A simple flow judgement — f’ declares that objects in flow positidnmay only directly flow
to flow positionf’. By definition, f may be any kind of flow position, but iDDP actually only
processes flow judgements whdres a simple flow judgement.

No rigorous meaning is given to the correctness of an individual flow judgement, but the intu-
ition is thatf — f’ means thaf’ holds all of the possible positions to which a value can directly
flow if it starts in positionf. The rigorous definition of correctness compares the flow position of
an object to its flow position after one step of execution. Since a simple flow position cannot, in
general, capture the entire flow position of an object at one configur&iDR, uses sets of flow
judgements to capture all of the possible flow from one configuration to the next.

A setof simple flow judgementg is correct for configurationfg precisely when:
Yobject# NilObj : VG C F :
Lgp = flowpogobject cfg) C Ihs(G)

= flowpogobject stepy(cfg)) T (Ihs(G) L rhs(G))

where:
hs@) = | | f
fof’eGg
and:
ths@)= | | ¥
fof’eGg

77

A set of flow judgements is correct for progra without the qualification, if it is correct in

step,(P) for all n.
5.5.3 Transitive Flow Judgements

A transitive flow judgemenrt —* f’ makes a stronger claim than a simple flow judgement: it claims
that objects in flow positiori may only flow to flow positionf’, even across an arbitrary number of
steps. A simple flow judgement makes a claim about one step of execution, while a transitive flow
judgement makes a claim about an arbitrary number of steps of execution.

Formally, a set of transitive flow judgementsis correctfor configurationsfg, stepy(cfg), ...,

stefd)(cfg) whenever:

Yobject# NilObj: VieO...n: Vjei...n: YGC F :
Lty C flowpog(object step,(cfg)) £ Ihs(G)

= flowpogqobject step,ip(cfg)) C rhs(G)

A set of transitive flow judgements is correct for progrgif it is correct for the configurations

step(P), . .., step,(P) regardless oh.
5.5.4 Responders Judgements

A responders judgemeid one kind of judgement about the call graph. Roughly, it asks “what is

invoked by a particular send statement?”. It has the following form:
send
statixx b — rs

The stat parameter must be send, sendvar, or beval statement.b is a binding map for that
statement, andtxis a dynamic context. The parametsis typically a finite set of tuples§ bctx),
each of which has a block specification and a contextnay also ber,, which signifies that any
method or block might be invoked.

The above judgement is correct for configuratstep,(?) if one of the following is true:

1. rsis T,.

78

2. statis not the statement about to executstep,(?).
3. b[block] is not the block of the main activation step,(?).
4. ctxdoes not match the main activationstép,(?).

5. There is a tuplebs bcty) € rs such that the main activation step,,,(#) has a block obs

and matches contekttx
5.5.5 Senders Judgements

A senders judgemeit a diferent form of judgement about the call graph. It asks, roughly, “what

statements invoke this block”. It has the following form:

send
bsix «—— ss

bsis the specification of a block or method aatk is a context that filters execution states for
the responding block. The presencectfthus allows more specific judgements about the calling
context; it allows the analyzer to limit attention to the invokers of some block under the assumption
that the execution state resulting from the block invocation matches the specified context.

The senders sein a senders judgemergsin the example above, is typically a set of tuples
(stat b, cctx), each of which specifies a statement with bindings and a contexssioudy also be
the distinguished valugs. If ss= T, the judgement declares that any statement might inlaske

The above judgement is correct for configuratstep,(?) if one of the following is true:
1. ssis Ts.
2. The next statement to executestep,(#) was not asend, sendvar, orbeval statement.

3. The main activation aftep,,,(?) is for a block other thabs In this case the senders judge-

ment makes no claim.

4. There is a tuplestat b, ccty) such thatcctx matches the main activation step,(#), the
binding map of that activation is, and the statement about to execute in that activation is

stat In this case, the sender is among the possibilities the judgement allows.

79

Lemma 5.2 (Senders Judgements Across Multiple Stepsiuppose thabsx P ssis correct

for configurationstep,(P) . . . step,(P). Then, for any activatioact € all _activations(step,, (%))

whose block ids that is matched bygtx, and whosealler is notundef, there must be am < n

such thatstep,(#) matches the last criterion of correctness for senders judgements. That is, there
is a tuple état b, ccty) such thatctxmatches the main activation step,,(#), the binding map of

that activation id, and the statement about to execute in that activatietais

Proof. Disregarding changes fac's, there is at most one new activation in each configuration that
was not present in the previous configuration. Further, if there is a new activation at all, then the new
activation must be the main activation. Therefore, ewtye all _activations(step,, ;(#)) must be

the main activation o$tep (#) for somek < n + 1. Further, since by assumpticaller # undef,

act cannot be the initial activation created &tep,(#) and thusk > 0. Choosem = k- 1. Since

thism < n, the senders judgement is true 8tep,,(#), and thus the final clause of the correctness

criteria for senders judgement gives the desired property. o

5.6 Goals

There is one kind ofjoal for each kind of judgement described above. Each goal is a judgement

that has had one portion removed:

e Atype goalv :;? tries to find a typé such thaw ;¢ t is correct.

A flow goal f —? tries to find a flow positiori’ such thatf — f’ is correct.

A transitive flow goalf —*? tries to find a flow positiori’ such thatf —* f’ is correct.

d . ' d
A responders godatat.xx b S 2 tries to find a responders setuch thastat.xx b sene

rsis correct.

send . . send .
A senders godb.x «—— ? tries to find a senders sstsuch thab., «—— ssis correct.

Every goal thaDDP pursues is of one of the above five forms.

80

5.7 Restrictions

Not all elements of the above domains (types, contexts, etc.) are valid for u3BByThere are

some restrictions, both to ensure that valid elements have a meaningful interpretation, and to keep all

of the domains finite. Some of the restrictions depend on the particular pr@@tsing analyzed.
Contexts have the bulk of the restrictions. To be consistent with the program, a context must

only specify nonT types for parameters that are visible inside the context’s block:
ctfvar] # T = var e static_bindingsy(ctxbs)
Further, not all contexts are usable for all purposes; there are additional restrictions as follow:

e For atype judgememtar ;. type eitherctxmust beT ¢, or it must specify a block surround-
ing the one whergar is declared. For a global variable or instance variable, there is no such
block and thus the context must g For a block parameter or local variable, the context
may specify the block where the variable is declared, or it may specify a block enclosing that

block.
e Avariable flow position [V var :]cx has exactly the same restrictions.

e For a self flow position [S meth:]¢, eitherctx must beTy, or it must specify the main

block of meth

e For a block typeBlblci, eitherctx must beT, or it must specify a block that islk itself

or a block that surroundsik.

e The context for a responders judgement is eithgy, or it specifies a block that is the block

of the binding map of the judgement or that lexically encloses that block.

e The context in a senders judgement is eithigk, or it specifies a block that is the block of

the judgement or that lexically encloses that block.

If a context is invalid according to either of the criteria above, then it can be broadened until it
meets the necessary restrictions. The notdtdx] denotes a context that is less restrictive thin
and that is valid for the intended purpose. In short, it is the smallest carttéduch thatctx is

valid andctx C ctX.

81

In detail,[ctx] is computed as follows. First, @txis T Or Lctx, then[ctX] = ctx. Otherwise,
the block specification dictx] is the innermost block specification encompassing the blodbof
that meets the restrictions on block context; if there is no such block specificatiofcthes Tcix.

The nonT parameter restrictions ¢ttx] are precisely those aftx where the variable is visible
from the chosen block specification.

As another restriction, only classes, variables, methods, etc. in the program may be specified in
the above domains. For example, in a type judgement, the variablesr must be a variable if®.

Finally, the recursion between block types and contexts must be restricted in some way in order
to ensure that a finite number of block types are possible. There are various approaches possible,
as Agesen has studied][The present work uses a simple approach, because it is expected that
precise analysis of blocks that access themselves via parameters is not frequently needed for precise
analysis of Smalltalk code. The approach used is as follows: the context associated with a block
may not mention, either directly or indirectly, another block type for the same block. That is, while
the context may mention a block type for dtdrent block, the context fdhat block type may not
mention a block type for either of the two blocks. And so on, recursively. Since there are only
finitely many blocks available in a particular program, there are only a finite number of possible
block types that meet this restriction. The notatjbtkt] refers to the block typelkt after having

enough contexts replaced by, that the block type is valid.

5.8 Lattice Properties

This section proves that block specifications, types, contexts, and flow positions all form lattices
with their respective operators, and that the respectivandr relations defined earlier are correct
join and meet operations for these lattices.

The proofs go as follows for each lattice. First, the ordering relation is shown to be reflexive,
transitive, and anti-symmetric, and thus to be true partial orderings appropriate for a lattice. Second,
the meet and join relations are shown to be complete. Thirdthedr relations are shown to
give least upper bound and greatest lower bounds. It follows from these properties that the given
set and ordering determine a lattice, and that the definaddr relations are in fact thel andn

operations of those lattices.

82

Lemma 5.3 (Comparison of Block Specifications is Reflexive}-or any block specificatiobs

bsC bs

Proof. Straightforward case analysislo$gives the desired property. m|

Lemma 5.4 (Comparison of Block Specifications is Transitive)For any block specificatiornssy,

bs;, andbs;, wherebs, C bs, andbs, C bss, bs, C bss.

Proof. The only non-trivial case is when nonelad;, bs,, andbs; are eitherrps or Lps. Let:

bss = (ms,l)
b = (Mmg,l2)
bss = (Mg, l3)

Rule BSO-NESTED must have been used, so that all of;

ms = ms
1 = Lal
ms = mg
b = lz@l”

for somel” andl”. It is thus clear thaing = ms and that; = 3@ (’@!”), and thudbs, C bss. O
Lemma 5.5 (Comparison of Block Specifications is Antisymmetric).For any block specifica-
tionsbs; andbs, if bs; C bs, andbs, C bs; , thenbs, = bs,.

Proof. The proof is a case analysis b$;. If bs, is Tys, then BSO-TOP must have been used to
justify bs; C b, and thuds is Tys. Likewise for the case wheles, is Lps.
If b = (msl), then BSO-NESTED must have been used to judiffiyC bs, andbs, C bs.

The only way this can be is b, = (ms1@l”) wherel” = []. Thusbs, = bs. O

Lemma 5.6 (Join of Block Specifications is Complete)For any block specificatiornss, andbs,

there is as, such thabs, L bs, = bs,.

83

Proof. The proof is by cases. bs or bs, is Tps, then one may choodes, = Tps. Similarly, if
bs = 1psthen one may choodes, = b, and ifbs, = 1psthen one may choodes, = bs,. That
leaves the case that neithes; nor bs, is Tps Or Lps. In that case, one must consider whether the
methods of the two block specifications are the same. If they are the same, theBASEMETH

may be used to find a satisfactdry,, and if they are dferent then one may choosgs. m|

Lemma 5.7 (Meet of Block Specifications is Complete)}-or any block specificatiorss; andbs,

there is as, such thabs, M bs, = bs,.
Proof. The proof is by cases, just as with the proof thas complete. m|

Lemma 5.8 (Join of Block Specifications is Correct).If bs L bs = bs,, thenbs, is the least
upper bound obs; andbs,. That is,bs; C bs, andbs, C bs,, and for any othebs; for which

bs C bs; andbs, C bss, it must be thabs, C bss.

Proof. To show the first part of the lemma, tHad, is an upper bound dis; andbs,, induct on the
derivation thatbs; LI bs, = bss and note that, in each case, one of the ordering rules will clearly
apply.

To show thatbs, is also theleastupper bound obs, andbs, induct on the derivation that
bs L bs = bs; and consider any other upper boursgd. It must be shown thdis, C bss. The only

non-trivial case is if the derivation finishes with BSJ-SAMEMETH. In that case, let:

bs = (msly)
b, = (msly)
bs, = (msly)
I, = longest prefix(l,12)

If b = Tps then the result is trivial, and b3 = Lps then there is a contradiction becausg

cannot be an upper boundlod; or bs,. Suppose, then, that:

bsg = (msls)

84

The justification thabs; = bss must use BSO-NESTED, and thiys= I3@I’ for somel’. Likewise,
I, = I3@I” for somel”. Thus,l3 is a prefix of both; andl,, and thus also a prefix &f, which is

the longest common prefix &f andl,. Thus by BSO-NESTEDDS, C bss. O

Lemma 5.9 (Meet of Block Specifications is Correct) Whenbs, n bs, = bs,, bs, is the greatest
lower bound ofbs; andbs,. That is,bs, C bs andbs, C bs, and for any othebs; for which

bs; C bs; andbs; C bsy, it must be thabs; C bs,.

Proof. It is straightforward to show the first part of the lemma, that C bs, andbs, C bs.
Simply induct on the derivation théat, 1 bs, = bs-.

To show the second part, induct on the derivation Hsat1 bs, = bs,, and letbs; be such that
bss C bs andbs; C bsy. It must be shown thais; C bs,. Consider each possible last step of the

derivation thabs, M bs, = bs-:
e BSM-SYM. By the inductive assumptiobs; C bs;.
e BSM-TOP. By BSO-TOPbs; C bs = Tps

e BSM-BOTTOM. Sincebss C bs = Lpg it must be thabsg = Lps. By BSO-BOTTOM,

bs; C bs.

e BSM-DIFFMETH. Letbs, = (msg,l1) andbs, = (m$,1,). If bss = Lps then the proof is
trivial, and if b = Tps then it cannot be thdiss C bs. Thus supposes = (ms, I3).
To justify thatbs; C bsy, rule BSO-NESTED must be used, and tlg = mg. The same
argument applies withs,, however, and thus alsnsg; = ms. This contradicts the assumption

of BSM-DIFFMETH, and thus the case is impossible.

e BSM-DIFFBLOCK. Again, the only non-trivial case islifs = (mss, I3) for somems; and

l5. Let:
bs = (msl@[@)@l)
by = (msl@[b]@ly)
a # b

85

Rule BSO-NESTED must be used to justify bt C bs andbs; C by, and thusng = ms

Further, it must be that both:

I3 = @@l @
I3 = l@[bj@l.@!

However, this is clearly impossible.

e BSM-NESTED. Again, the only non-trivial case isbf = (ms, I3) for somems; andls.

Let:
bs = (msl)
b = (msl@l’)
bs, = (msi@l’)

Rule BSO-NESTED must be used to justhg C bs andbs; C bs, and thuang = ms
Further,l3 = 1@I’@!”. Thus, by Rule BSM-NESTEhs; C bs-.

Lemma 5.10 (Reflexive Property for Comparison of Types)For any type, t C t.
Proof. Justification rule TO-REFL gives this property directly. O
Lemma 5.11 (Comparison of Contexts is Reflexive)}-or any contexttx, it must be thattx C ctx

Proof. If ctx = T¢, then CO-TOP gives this property. Likewisectk = L, then CO-BOTTOM

gives the property. I€txis a parameters context, then CO-PARAMS gives the desired property.

Lemma 5.12 (Comparison of Types and Contexts is Transitive)For any typeds, tp, andts,
wheret; C tp, andt, C t3, it must be that; C t3. For any contextgtx, Ctx,, andctxs, where

Ctxy C Cctxo andctx C ctxg, it must be thattx C ctxs.

86

Proof. The proof is by induction on the depth of the deepest justificationtthat t,, t, C t3,

Ctxy C Cixp, Or Ctxp C Cixa.
First, consider the transitivity of types. One of the following rules must be used to justify that

t1 C to:
e TO-REFL. Then; = t,. Since, by assumptioty C t3, it must also be that C ts.

e TO-TOP. Thent; = T. It must also be thal = T, because otherwise it is not possible for

t, C t3. By TO-TOP againt; C t3.
e TO-BOTTOM. Thent; = L. By TO-BOTTOM again{; C t3 regardless of whag is.

e TO-BLOCK-CTX. Thent; = Bbdcty, andty = Blbdctx,, Wherectx; E ctxp. Now consider
each way that it might have been justified that ts:
— TO-TOP. Thertz = T, and by TO-TOPt; C ts.

— TO-BLOCK-CTX. Thentz = Blbgcw, Wherectx, C ctxg. The derivations thattx; C
ctx and thatctx; C ctxg must be less deep than the derivations that t, and that
t, C t3. Thus the inductive assumption may be used, etxg C ctxs. Thus by

TO-BLOCK-CTX, t; C t3.
— TO-BLOCK-CLASS. Then TO-BLOCK-CLASS also justifieésC ts.
— TO-SUM-R. Thertz is a sum type that hastaamong its elements such thatc t'. By

the inductive assumption, it is also true th t’. Thus by TO-SUM-R{; C ts.

e TO-BLOCK-CLASS.1; is a block type anth is the class type for class Block. Consider each

way to justifyt, C ta:

— TO-REFL. Thents is also the class type for Block and the desired result is given by
TO-BLOCK-CLASS.

— TO-TOP. Thertz = T, and TO-TOP gives the desired result.

— TO-SUM-R. Then the inductive assumption gives the desired result.

e TO-SELECTOR. The proof parallels the one for TO-BLOCK-CLASS.

87

e TO-SUM-R. t; is a sum type, and there is some elemigrdf the sum for whicht; C t’.

Consider each way that it may have been justified thatts:

— TO-REFL. Trivial.

— TO-TOP. Trivial.

— TO-SUM-R. Thents is a sum type with an elemetit such that, C t”. To justify that
t, C t”, one must use TO-SUM-L. Thus, all elements.ofre subtypes df’, including
t’. By the inductive assumptioty, C t”, and thus by TO-SUM-R C ts.

— TO-SUM-L. All elements oft, are subtypes ofs, includingt’. By the inductive as-

sumptiont; C ts.

e TO-SUM-L. t; is a sum type, and every element of the sum is a subtype &ach element
of t; cannot be a sum type, and so the justification that each element is a subtypamiot
use TO-SUM-L and must instead use one of the above rules. No matter which rule is used,
the argument from above may be repeated to show that the element is also a sulttype of

Thus the condition is met to use TO-SUM-L to justtfyc ts.

Now consider transitivity of contexts. One of the following rules must be used to justify that

Ctxy C ctxo:
e CO-TOP. Therctx, = T It most also be thattxs = T, and thus clearlgtx; C ctxs.
e CO-BOTTOM. Therctx; = L¢ix. Then by CO-BOTTOMctx C Ctxs.

e CO-PARAMS. Thercty andctx, are parameters contexts where the typestaf are sub-
types of the corresponding typesaik,. If one justifiesctx, C ctxs with CO-TOP then the
result is trivial, so suppose one uses CO-PARAMS. Then the typas.adre subtypes of the
corresponding types @txz. By the inductive assumption, the typesot; are also less than

the corresponding types ofxz, and thus CO-PARAMS justifies thatx; C ctxs.

Lemma 5.13 (Comparison of Types and Contexts is Antisymmetric)Let t; andt, be any types,

andctx; andctx be any contexts. Iy C t; andty C t; thent; = to. If ctxy T ctx andctx C ctxg

88

thenctx = ctx .

Proof. The proof is by induction on the depth of the deepest inference tree used to infierthat
to C tg, Ctxg C Ctxp, Or Cbxp C Ctxg.

Consider in turn each way that one might justifyc t,:
e TO-REFL. It must be that = t; in order to use this rule at all.

e TO-TOP. Thudy = T. The only ways to justify that C t; are TO-REFL, TO-TOP, and
TO-SUM-R. If TO-REFL or TO-TOP is used the result is trivial. TO-SUM-R cannot in fact
be used because the assumptions cannot be met: There is no way for the sum to include a type

that is a supertype of.
e TO-BOTTOM. Likewise.

e TO-BLOCK-CTX. It must be that; = Bfb9pcty, andtz = Blbdber,, fOr somebs betx, and
bctx. To justify thatt, C t1, either TO-REFL is used, or TO-BLOCK-CTX is used again. If
TO-REFL is used then the result is trivial. If TO-BLOCK-CTX is used, then it must be that
bothbcty C bctx andbcety T bety. By the inductive hypothesifacty = bctx and thus

alsot; = to.
e TO-BLOCK-CLASS. In this case, there is no rule that can judtfi t;.
e TO-SELECTOR. Likewise.

e TO-SUM-R. It must be thab = Xts; and that there is § € ts; such that; C t;. To justify
to C t1, one of these rules must be used: TO-REFL, TO-TOP, TO-SUM-R, or TO-SUM-L.
TO-REFL is trivial, and, as described above, TO-TOP is impossible. In fact, as described

below, TO-SUM-L and TO-SUM-R are impossible as well.

If TO-SUM-R is used, thety = Xts; and there is & € ts; such that; C t]. The only way
to justify t; C t] is with TO-SUM-L, which means that every elementt®f, includingt’, is
a subtype ot;. By the inductive hypothesis, = t,, and thus every element ts; is also a

subtype ot’,. But thent; is a malformed sum type.

89

If TO-SUM-L is used, then every elementtsf is a subtype of;. By the transitivity property,

every element ofs, must also be a subtype 6f But thent; is, again, a malformed sum type.

e TO-SUM-L. It must be that; = Xts and that all elements df; are subtypes of,. To
justify thatt, C t1, one of these rules must be used: TO-REFL, TO-BOTTOM, TO-SUM-R,
or TO-SUM-L. TO-REFL is trivial. TO-BOTTOM is actually impossible because no sum

type can be a subtype af TO-SUM-R is symmetric to a case already discussed.

That leaves TO-SUM-L to justify, C t;. It must be that, = Xts, and every element d§,

is a subtype of;. To justify that each of these elements is a subtypig,0FO-SUM-R must

be used. Thus for each elementtsf, there must be an element t3f that it is a subtype

of. Similarly, there must be an elementtsf that is the supertype of each element®f
Consider any elemeni, € tsi, an elementy, € ts, such thatti; C toy, and an element
tp € ts; such thatty; C tin. By transitivity, tig C tip. Sincet; is a well-formed sum type,

it must be thati; = tip. By the inductive hypothesis, it must be thgt = to;. Since this
argument holds for all elements t3f andts,, it must be that each element of each set has an

equal element in the other set, and thus the two sets must be equat; Fhigsas well.

Lemma 5.14 (Join of Types is Complete)For any typed; andty, there is a typd,, such that

LUty =t,.

Proof. The proof is straightforward by cases. Either one type is a subtype of the other, or if not,

each type is or is not a sum type. m|

Lemma 5.15 (Join of Contexts is Complete)For any contextetx; andctx,, there is a context

ctx, such thattx LI ctx = ctx,.
Proof. The proof by cases is straightforward. |

Lemma 5.16 (Meet of Types and Contexts is Complete)ror any typed; andty, there is a
typet, such thatt; mt, = t,. For any contextetx; andctx, there is a contexttx, such that

Ctxq M Ctxo = CtX.

90

Proof. The proof is by induction on the constructiontpfindt, or ctx andctx,. Each type s, 1,

a class type, a selector type, a block type, or a sum type. In each case, either one type is a subtype
of the other, or one of the rules must apply. Note th&t &ndt, are blocks, then it will be possible

to satisfy the assumption in TM-BLOCK-SAME due to the inductive assumption. Likewise for
TM-SUM. Similarly, each context iS¢, Lctx, OF @ parameters context. Likewise, note that the

assumptions in CM-PARAMS are satisfiable due to the inductive assumption. m|

Lemma 5.17 (Join of Types is Correct).If t; LIty = t,, t., is the least upper bound tf andt; in

the types lattice. Thati$; C t,, to C t,, and for anyt/, such that; £ t/, andt, Ct/, t, C t].

Proof. To show that; C t,, andt, C t.,, one can do a straightforward case analysis on the derivation
of t; Lty = ty,. Thusu gives upper bounds.
To show that,, is theleastupper bound, letf, be any other upper bound, and consider each way

that it may be derived that Lty = t,.
e TU-SUB1 and TU-SUB2. Trivial.

e TU-SIMPLES. By TO-SUM-L, it must be that, C t/; the two elements dof, aret; andt;

which are assumed to be subtypes; pf

e TU-MIXEDL1. t; andt, must be sum types, and every component typg, @hust also be a
component of, or must be exactlyy. Each of these types must be a subtyp& pand thus

again TO-SUM-L shows thdt, C t/,.
e TU-MIXED?2. Likewise.

e TU-SUMS. t3, t, andt, are all sum types, and every component,pofs a component of

eithert; or t;. Thus TO-SUM-L again shows thatC t/ .

Lemma 5.18 (Join of Contexts is Correct).For any three contextstx;, ctx, andctx,, where

Ctxg U Ctx = Ctx,, Ctx, is the least upper bound ofx; andctx,.

First show thattx, is an upper bound, induct on the derivatiorcod Lictx = ctx,, and observe

that in each possible case, one of the ordering rules will apply.

91

To show thatctx, is not only an upper bound, but the least upper bound, induct again on the
derivation ofctx; LI ctx = ctx,, consider each possible rule that might be used in the final step of

the derivation, and consider any other upper boetgd. It must be shown thattx, C ctx .

e CJ-SYM. The inductive assumption directly gives the desired result.
e CJ-TOP. Every context is ordered befargy.

e CJ-BOTTOM. ctx, can only beLy; otherwise there is no way to justify ordering it before

Letx. Thus by CO-BOTTOMgtx, C ctx .

e CJ-DIFF. IfctX, is T, then the proof is trivial. It cannot becy. If ctx, is a parameters
context, then a contradiction arises, as follows. The block specificatiotpimust be or-
dered after both the block specificationatk; and the block specification @fx,. Since the
join operation for block specifications gives least upper bounds, the only context this could

be isT. However, the block specification of a parameters context can noghe

e CJ-PARAMS. Ifctx, is Tetx, then the proof is trivial. Furthectx, cannot beLqy. The only

remaining case is thatx, = < (bss) ... >. It must be that all of:

Im

bs bs;

M

bs bs;

ctx [self]

M

ctx [self]

M

ctxo[seld] ctx [self]
ctx [var]

ctx [var]

Yvar : ctx[var]

Im

Yvar : ctx[var]

Im

Since meet is correct for block specificatiobs, Libs, T bss. By the inductive assumption,

both:

N

Ctxi[self] Lictxp[self] C ctx [self]

Yvar: ctxj[var] U ctx[var] T ctx [var]

92

Thus all of the conditions are met to use rule CO-PARAMS, etd C ctX,.

Lemma 5.19 (Meet of Types and Contexts is Correct)For any types;, to, andt,, wheret; Mt =
tn, tn is the greatest lower bound tf andt; in the types lattice. That is;, C t3, t- C tp, and for
anyt’, such that/, C t; andt/, C ty, t/, C ty. Further, for any contextstx;, ctx, andctx, where

ctxq M ctx = ctxq, Ctx, is the least upper bound ofx andctx,.

Proof. First show that, andctx, are lower bounds. It gfices to perform a straightforward induc-
tion on the derivation of; Mty = ty or ctx M ctx = ctxy. The only non-trivial case is TM-SUM.
One can show, by a tedious case analysis, that whenever two types are a subtype of a third type, their
union is also a subtype of the third type. By extension, if any finite number of types is a subtype of
t, then so is their union.
Thusn gives lower bounds.
To show that andctx, aregreatestower bounds, let/, andctx, be any other lower bounds.
It must be shown thdf, E t; and thatctx, = ctx,.

First, consider each way that it may be derived thatt, = tr.
e TM-SYM. The inductive assumption gives the desired result.
e TM-SUBTYPE. Sincd/, is a lower bound, it must be tht C t; = t-.

e TM-CLASS. A case analysis on theffiirent kinds of types shows thiéit = L. Since this
argument is used repeatedly, this simple case analysis will be listed in full:
— If t/, is T, then there is a contradiction: there is no way to jusfific t;.

— If t/, is a class type, then it must be a class type for the same clésaras for the same

class as,. However, by an assumption of TM-CLASS, these classes &iarelit.

— If t/, is a selector type, then the classpénd the class db must be Selector. However,

these classes cannot be the same.

— If t/, is a block type, then likewise for class Block.

93

— If t/, is a sum type, then all of its elements must be subtypes afidt,. However, its
elements must be class, selector, or block types, and as argued above there are no such

types available that are subtypes of biatAndt,.
Sincet/, = L =tn, t/, C tn.

e TM-CLASS-SELECTOR. Likewise.

e TM-CLASS-BLOCK. Likewise.

e TM-SELECTORL. Likewise.

e TM-SELECTORZ2. Likewise.

e TM-SEL-BLOCK. Likewise.

e TM-BLOCK-DIFF. Likewise.

e TM-BLOCK-SAME. If t/, = 1, then the desired result is clear. Otherwitsemust be a block
type. Its block specification must be the same as that;fandt,, and its context must be
subsumed by both the contexttpfand the context of,. By the inductive assumption, any
such context must be subsumed by the meet of these two contexts, and the cottéxirof

fact the meet of these two contexts. Thus, by TO-BLOCKS t-.

e TM-SUM. t; = Xts. Sincet/, C t;, there must be some elemeht ts such that/, C t’. By
the inductive assumptioty, C t' 1 to. Sincet is the join oft’ M t; with some other types,

and, since joins give upper bounds, it must also betthatt-.
Now consider each way to derietx; M Ctx = Ctx.
e CM-SYM. By the inductive assumptionfx’, C Ctx.
e CM-TOP. Therctx, = Tk andctx = ctx. By assumptiongtx, E ctx = Ctxq.
e CM-BOTTOM. It must be thattx, = L¢tx. Thus by CO-BOTTOMgtx, C ctx.

e CM-DIFF. If ctx, is Lctx, then the proof is trivial, andtx, cannot beTy. If it is a param-

eters context, a contradiction arises. Its block specification must be a subtype of the block

94

specifications oftx; andctx,, and its block specification must not hgs. By the inductive
assumption, however, and since meet for block specifications gives the greatest lower bound,

its block specification can only heys.

e CM-PARAMS. If ctX, is Lctx, then the proof is trivial, and it cannot bet. Thus, suppose

ctx, = < (bsg) ... >. It must be that all of:

Im

bs bs

Im

bs; bs
ctx, [self]

ctx, [self]

Yvar: ctx;[var]

ctxq[self]

M

Ir

Ctxo[seld]

Ir

ctxq[var]

Im

Yvar: ctx;[var] ctxo[var]

Since meet is correct for block specifications T bs; M bs,. By the inductive assumption,

both:

M

ctx [self] ctxi[self] M cho[self]

Yvar: ctx [var] C ctx[var] rcte[var]

Thus all of the conditions are met to use rule CO-PARAMS, &g C ctx-.

Lemma 5.20 (Comparison of Flow Positions is Reflexive}-or any flow positionf, f C f.
Proof. For each kind of flow positiori may be, there is a rule showing thiat f. m|

Lemma 5.21 (Comparison of Flow Positions is Transitive) For any three flow position§, f,,

and f3, wheref; C f, andf, C fs, it must be thaff; C fs.

Proof. Consider each way that it may be derived that fo:

95

e FO-TOP. Therf, = Tf,. It must also be that; = T, because otherwise it is impossible that

fo C f3. Thus by FO-TOPf; C fa.
e FO-BOTTOM. Thenf; = 1¢. By FO-BOTTOM againf; C fa.

e FO-VAR. Then:

fi = [Vvar:ieg
f, = [Vvarie
Ctxy £ cCtx

Consider each possible way to justify tHatC fs:

— FO-TOP. Thenfz = Tf,. By FO-TOP,f; C fa.

— FO-VAR. Thenfz = [: V var :]cy, Wherectx C ctxs. Since comparison of contexts is

transitive, it must be thaitx C ctx. Thus by FO-VAR,f; C fs.

— FO-SUM-R Thenf; = [: X fs3 :] and there is somé; € fs3 such thatf, C f;. One of
the above rules must have been used to judtify f:, and thus by the arguments given

above it must be thaly C f}. Thus, by FO-SUM-Rf; C f.
e FO-METH. Likewise.

e FO-SUM-L. Thenf; = [: X fs; :] for somefs,, and for everyf; € fs, it must be that] C f,.
If f» is not a sum flow position, then one of the above arguments will show that for each

f] € fsy, f] C f3, and thus by FO-SUM-Lf; C fs.
Thus, supposd; = [: X fs; :]. Consider eacH; € fs; in turn. To justify thatf] C f;, rule
FO-SUM-R must have been used. Thus there must be $prads, such thatf; C ;. Now,
consider each way it may have been justified that fs:

— FO-TOP. Therfz = Ty, andf; C fa.

— FO-SUM-L. Then every element &, including f;, is subsumed bys. Thus, by one

of the above argument$; C fs.

96

— FO-SUM-R. Thenf; = [: X fs3 :], and there must be sonfg € fs; such thatf, C f3.
To justify that f, C f3, it is only possible to use FO-SUM-L. Thus, there must be a

f; € fs; such thatf) C f;. By one of the above arguments, it must also be fhat f;.

By FO-SUM-R, it must also be thdt C fs.

In all casesf] C f3. Since this argument holds for dl] € fs;, one may use FO-SUM-L to

show thatf;, C fa.

e FO-SUM-R. Thenf; = [: X fs; :] and there is somé € fs, such thatf; C f]. Sincef; C f3,
itis straightforward to show thafty C f3. Thus, by one of the arguments given previously, it

must also be that; C fs.

Lemma 5.22 (Comparison of Flow Positions is Antisymmetric).For any flow positions; and

fo where bothf; C f, and fo C fq, it must be thaff; = f5.

Proof. The proof directly parallels the proof of antisymmetric comparison of types and contexts.

i
Lemma 5.23 (Join of Flow Positions is Complete)For any flow positionsf; and f,, there is a
flow positionf, such thatf; LI f, = ..

Proof. The proof by cases is straightforward. m]

Lemma 5.24 (Meet of Flow Positions is Complete)lf f; andf, are any flow positions, then there

is a flow positionf such thatf; 1 f, = f-.

Proof. The proof is by induction on the constructionfafand f,. The proof is straightforward. o

Lemma 5.25 (Join of Flow Positions is Correct).For any flow positionsf;, f,, and f,, where
fiu fa = f, fy is the least upper bound &f and f. Thatis,f; C f, f2 C f,;, and for anyf/, such

thatf; C f/, andf, C f/, it must be thaff, C f/.

Lemma 5.26 (Meet of Flow Positions is Correct).For any flow positionsf;, f,, and f,, where
fi 1 f2 = f4, fr is the greatest lower bound &f and f,. That is, f; C 1, f; © f2, and for anyf/,

such thatf/, C f; andf/ E fp, it must be thaff/, £ fr.

97

Proof. The proofs for these two lemmas are directly parallel to those for the analogous lemmas for

types. O

5.9 Other Properties

Lemma 5.27 (Decomposition of Flow Position Joins)If f is a simple flow position and C

fiu fp, then eitherf C fyor f C fo.

Proof. Case analysis on the rule used to jéjrand f5. O

98

CHAPTER VI

JUSTIFICATION RULES

Chapter 5describes the data-flow judgements tBP produces, but says nothing about which
judgementdDDP produces, nor about how it finds those judgements. This chapter fills in both of
these gaps by describing thsstification rulesavailable toDDP.

Justification rules are specified as rules of inference, such that every judgement produced by
DDP must be justified using only those rules. WHeBP produces a set of judgements, those
judgements are always justified by the justification rules of this chapter. Looked at in reverse,
wheneverDDP tries to solve a goal and find a judgement satisfying it, it consults the available
justification rules and follows them backwards. It constructs a judgement to satisfy the goal, such
that the judgement can possibly be justified using the available rules.

Each justification rule has not only a conclusion, but also a number of assumptions. For the
rule to be used, all of its assumptions must be satisfied. In particular, each judgement listed in the
assumptions must itself be justified by another justification rule. The result is that, in general, the

full justification of a judgement is a tree of justifications. Such a tree is caljestification tree

6.1 Meta-Judgements

The justification rules frequently refer to two meta-judgements. First, the meta-judgement:
> |

means that judgemejis justifiedwith respect tq7 and®. A justified judgement is locally consis-
tent with the other judgements . That is, if all of the other judgements # are correct, ther
must be as well.

Looking ahead to the correctness proofdfapter 8note that this reasoning is circular and thus
not enough to ensure that a sefudtifiedjudgements is also a set of correct judgements. For that

to be the case, the justification rules, given in this chapter, are careful to ensure that, roughly, the

99

assumptions of each rule refer only to information about the syntax of the program or to information
about previous states of execution. More precisely, any chain of justifications and assumptions must
eventually refer to previous states; some individual assumptions may refer to the current execution
state, but there may not be a cycle of such justifications and assumptions. By consistently arranging
the justification rules that their assumptions look back in time in this fashion, the stage is set for a
proof by induction over steps of execution.

The second common meta-judgement referred to is a strictly weaker claine-thait looks
like:

statx b >]

This judgement means that judgemgatcounts forthe possible execution of statemetdtunder
bindingsb. It means that ifj is correct in one configuration, and thstat executes—thus moving

to a new configuration—thgtwill remain correct in the new configuration. The bulk of the justifi-
cation rules given in this chapter are techniques for justifying these accounts-for meta-judgements

for different kinds of statemengsand data-flow judgemenis

6.2 Subgoals: Justification Rules Viewed Backwards

Justification rules can be viewed in reverse as a tactic for finding a solution to a goal. Whenever
DDP updates a goal, i.e. whenever it runs thpglate function described irfChapter 3it finds a
justification rule whose conclusionis j for some judgemenitthat is a possible answer to the goal.
Then it tries to satisfy each assumption of the rule. Some assumptions can be satisfied directly by
simply modifying the goal’s tentative solution. Others must themselves be justified, in which case
DDP must recursively choose another justification rule and try to justify the assumption.

Some assumptions require thate g for some judgement’ meeting some list of constraints.
In such a caseDDP creates asubgoalto find a j” meeting the required constraints. Note that
justification of j is only valid so long as every of this kind is in g and justified. If any sucly’
is removed fromJ and replaced with a fferent judgement, then the justification pmust also
be revisited. Thus, subgoals correspond to dependencies; a goal’s tentative solution depends on its
subgoals’ tentative solutions.

Consider an example based on the examplehapter 3 The initial goal is “What iX?”, which

100

is written formally as:
X:+?

One of the justification rules is JUST-ONE, which is as follows:

JUST-ONE
meets min(j)

Y(stat b) € bound_statgP) :

statxb > |

>
In order to use this ruld)DP must meet the rule’s assumptions. The strongest assumption to be
met is the one thajtaccounts for all statements$h Statements that do not modifyare trivial to
account for; the only non-trivial ones in the example programXare- Y andX := pl. Both of

these may both be accounted for using the JUST-VAR justification rule:
T-VAR
v = Db[l] vV =b[l'] VigtedJ t'Ct

[l:=I'1%b > vit

Ignoring issues of variable bindings, and ignoring the trivial justificati@®BP could use these

rules to reach the following tentative justification tree:

{UndefinedObje¢C tx

meets min(X :t tx) Yirtyed ty C tx plittpnedg tp1 C tx

[>X:Tt)(

This justification tree has three holes in it, howeve, ty, andty;. It is easy to choosg once

the other types are known: choose the smallest type that satisfies all of the requirements in the
assumptions. To fill in the holes foy andty;, DDP creates two subgoals, one for+? and one for

pl :+?. Informally, these subgoals are read “What is Y?” and “What is p1?”. When these goals are

initially created, they will be given a tentative solutioniof This leads to the following justification

101

graph, which corresponds to the state of the example executionHigume 3.4

{UndefinedObje¢C [UndefinedObje¢t

Y+1edg 1 C [UndefinedObjegt
meets min(X :+ [UndefinedObje¢}

pli+1Ledg tp1 E [UndefinedObjegt

> X 1 [UndefinedObjegt

Note that the type of at this stage iffJndefinedObje¢instead ofL. For clarity,Chapter 3gnored
thismeets min requirement and thus left out tfiéndefinedObje¢t from the entire example exe-
cution.

Also, note that the judgemedit:+ [UndefinedObje¢tis probably not correct. This example
justification only shows that the judgement@nsistentvith certain other judgements i, namely
Y :+ L andpl :+ L. These two judgements are probably not justifiable DE4? progresses, it will
adjust them to be justifiable, that¥s:+ t; for some typd; andp1l :+ t, for some typey, but then
X :+ [UndefinedObje¢twvill no longer be justifiable and must itself be adjusted. Thus, changes ripple
from judgements to other judgements depending on them, to other judgements depending on those,

and so on until all judgements are justified with respect to each other.

6.3 Overall Justification Approach

This subsection gives several general strategies available for justifying a judgement. All of these
justification rules are listed iRigure 6.1

First, the judgement may be given some conservative value that is clearly correct regardless of
how the program behaves. Such a judgement is justified with one of the rules: JUST-PRUNE-TYPE,
JUST-PRUNE-TFLOW, JUST-PRUNE-FLOW, JUST-PRUNE-SEND, or JUST-PRUNE-RESP.

Second, one might show that a judgement is tautological. The rule JUST-CTX is such arule: the
type in the judgement subsumes the type that the context already presumes the variable will hold.

Finally, a judgement may account for every statement in the program and be justified by the
rule JUST-ONE. The JUST-ONE rule requires that a judgement account for the possible execution
of every statement in the program. Additionally, JUST-ONE requires that any judgement meets

a certain minimum value. In combination, these two requirements prepare for an inductive proof

102

JUST-PRUNE-FLOW

JUST-PRUNE-TYPE fp is a simple flow position

JUST-PRUNE-TFLOW

>ViT >fp— Ty > fp =" T
JUST-ONE
meets min(j)
JUST-PRUNE-SEND JUST-PRUNE-RESP V(stat b) € bound_statyP) : JUST-CTX
SS=Tg rs= Ty statxb > j cvjct
d d i .
b My s s > Staby * b —5 rs > >Vict

Figure 6.1: Overall Justification Rules

MIN-NONTYPE MIN-PARAMETER MIN-VAR
jis not a type judgement Vv is a parameter [UndefinedObje¢C t
meets min(j) meets min(v ;¢ t) meets min(v i t)

Figure 6.2: Minimum Requirements of Judgements

of correctness. The first part requires that no matter which statement executes the judgement will
remain correct, and the second part shows that the judgement is correct initially. The minimum
judged values are shown Figure 6.2 They require that any type judgement for a non-parameter
includes the type ofilObj, becaus@ilObj is the initial value automatically assigned to variable
whenever a new contour is allocated that holds that variable.

Not all judgements are justified by the rulesFogure 6.1 In particular, transitive flow judge-
ments, senders judgements, and responders judgements have their own justification rules which are

described later.

6.4 Type Justifications

Figure 6.3gives several type justifications that are trivial. Most of these rules justify judgements
where the only variable changed igfdrent from the one the judgement refers to.

Figure 6.4gives the non-trivial type justifications for all other statement types. For the most
part these are straightforward. For example, T-VAR accounts for a statémerit by the type
for the variable on the left being larger than a type for the variable on the right in the same context

(or more specifically, the same context after the context broadening describection 5.7. To a

103

first approximation, T-SELF accounts for a statenlent self by the type for the variable on the
left including the class cone type for the class the statement appears in. To a closer approximation,
T-SELF allows this type to be whittled down by the context of the type judgement.

The type justification rules for method and block invocations are T-SEND, T-SENDVAR, and
T-BEVAL. Each of these reduces the justification to the justifications of two other judgements. One
judgement accounts for types of the variable to be assigned when the method or block returns, while
the other judgement accounts for types of the parameters of any methods or blocks that might be
invoked by the statement.

Figure 6.5gives the first group: they account for the type of the variable on the left. The three
trivial justifications, T-SEND-R-TRIV, T-SENDVAR-R-TRIV, and T-BEVAL-R-TRIV, require the
assigned variable to beftkrent from the variable of the type judgement. The other three follow this

pattern:
1. Find the methods or blocks that may be invoked by the statement.

2. Find the overall context that the method or block will run in, by finding types for the param-

eters and, for method invocations, the receiver.
3. Divide that context, ilfCPA fashion, into a number of small contexts.

4. For each combination of an invoked method or block, a return statement in that method or
block, and one of the small contexts, find a type for the returned variable and require that the

type of the variable being judged is a supertype of that type.

Figure 6.6gives justifications for parameter type judgements that were not justified by the rule
T-CONTEXT. Aside from the trivial justifications, the pattern for all of them is to find the statements
that might invoke the relevant block and, for each of these, to find a type for the relevant argument

passed by the statement.

6.5 Flow Justifications

Figure 6.7andFigure 6.8give those justifications for flow judgements that are trivial. There are

many of them; in addition to justifications based on mismatching variables, there are justifications

104

T-LIT-TRIV T-VAR-TRIV T-NEW-TRIV

v # b[l] v # D[l] v # b[l]
[l:==lit]xb > Vvt [l:="]%b > vt [l :==new clasgxb > vt
T-BLOCK-TRIV
v # b[l]

[l :==block xb > vt

Figure 6.3: Trivial Type Justifications

T-SEL
v = b[l]
T-LIT selector= Selector labelts humargsmg
v = b[l] t' =lit type(lit)Ct t'=Sfls;mdCt

[l:=lit]xb > vt [l :=selectof xb > vt

T-VAR T-SELF
v=bll] V=bll Vigted tCt v=b[]

(c[self] Mmclasg’) Ct
[l:=1"Txb > vt

[l :=self]xb > vt

T-NEW T-BLOCK
v = b[l] clas$C t v = bfl] BlblocK; C t
[l :=new clasgxb > vt

[l :==block xb > vt
T-SEND

[l :=send(lrcyr,S€ll1, ..., In)] *b R vt
[I = Send(lrcvr, Sel,ll,. . .,Im)] * b S > V Ct

[I = Send(lrcvr,selll,...,Im)] *b > V:Ct

T-SENDVAR
[I = Sendvar(semvamcvr, Ise|var, I]_, ey Im)] * b R > \Y :C t
[I = Sendvar(semvarrlcvr, Ise|var, I]_, ey Im)] * b S Vv c t
[l := sendvar(semvarfr, lselvar 11, ..., Im)] *b > vict
T-BEVAL

[l = beva1(|b|ockvar, |1 e Im)] * b > \ :c t

Figure 6.4: Type Justifications.

105

T-SEND-R-TRIV
v # bl]

[l := send(lreyr,s€ll1...IM)] *b R> vt

T-SEND-R
v =b[l] stat= [l := send(lcyr, S€LI71 ... 1n)]
d
staky x b 2% rs € g ctx=—c rs = (my, Cy)...(Mp, Cp)
Yiel...p:V Ve €ret vars(m) :
[l := send(lreyr,s€ll1...Im)] *b R> vt

T-SENDVAR-R-TRIV
v # b[l]

[I = Sendvar(lrcvr,Ise|\/ar,|l...Im)] * b R[> Vct

T-SENDVAR-R
stat= [l := sendvar(licvr, Iselvar |1 - . . Im)]
d
stat x b M rs e g ctx=c rs = (my, Cy)...(Mp, Cp)
Yiel...p:V Vet €ret vars(im) :
Ht/ (Vret :Ci t’) € j) /\ (t/ E t)

[I = Sendvar(lrcvr,Ise|var,|l...Im)] * b R[> Vct

T-BEVAL-R-TRIV
v # b[l]

[l = beval(|b|ockvar,ll...Im)] *b Rl> Vct

T-BEVAL-R

statix b seng rse g ctx=c rs = (blky, bctxy) . . . (blkp, betxy)
Viel...p:blk.retFromMethodv 3t" : (ret_var(blk) :peix ' €) A (T C 1)

Figure 6.5: Return Type from Subroutine Invocations

106

T-SEND-S-TRIV
(v is not a method parameter)

[|| = Send(lrcvr,sel,ll. . Im)] * b S Vv :Ct

T-SEND-S
(v is the k-th parameter of method meth)
stat= [|| = Send(lrc\/r, Sel I]_ . e Im)]

d
methix = sse ctx=c
V(sstatsh scty € ss:
sstatz stat v sb# b v 3t : (b[lk] sext’ € T) A (1 £ 1))

T-SENDVAR-S-TRIV
(v is not a method parameter)

[|| = Sendvar(lrcvr, Ise|var, Il N Im)] * b S > \Y :c t
T-SENDVAR-S
(v is the k-th parameter of method meth)
stat= [|| = Sendvar(lrcvr, Ise|var, I]_ e Im)]

d
methyy Pl sse g ctx=c
Y(sstatsh scty € ss:
sstat# stat v sbx b v @t : (b[ly] :seext’ €) A (' T 1))

[I| = Sendvar(lrcvr, Ise|var, I]_ e Im)] * b S > \' :C t

T-BEVAL-S-TRIV
(v is not a block parameter)

[|| = beval(|b|ockvar,Il...lm)] * b S|> Vct

T-BEVAL-S
(v is the k-th parameter of block blk)

stat=[l| := beval(lpiockvan I1 - - - Im)]

send
blkety «—— sse T ctx=—c

Y(sstatsh scty € ss:
sstat stat v sb=b v @t : (b[ly] :setxt’ €) A (' T 1))

Figure 6.6: Parameter Types after Subroutine Invocations

107

based on the statement type not having the relevant kind of flow at all. Self flow positions only
flow via self statements, and variable flow positions only flow via variable assignments, message
sends, and returns. No flow at all happens for literal creation, class instantiation, and block creation,
because these statement types only create new objects and do not move around existing objects.
Figure 6.9gives the flow justifications that are non-trivial. F-SELF and F-VAR are straight-
forward. The three send justifications F-SEND, F-SENDVAR, and F-BEVAL simply divide the

justification into smaller justifications:

¢ Justification that the judgement accounts for the flow of the receiver:
[staf xb self> [[VvVvi]c—of

This meta-judgement claims that the flow judgement jz:]c — f accounts for the flow

from the receiver o$tatinto the method receiver of any method that may be invokestaty
¢ Justification that the judgement accounts for the flow of each parameter:
statxb i> [[VVvi]c—of

This meta-judgement claims that the flow judgement accounts for flow inidhtiparameter

of any invoked method bgtat

¢ Justification that the judgement accounts for flow from the method or block back to the state-
ment:

statxb <ms>p> [[VVvi].—of

This meta-judgement claims that the judgement accountss for flow from the return of method

msinto the assigned variable efat

Figure 6.10 Figure 6.11 andFigure 6.12give justifications for flow into a method or block.
They follow exactly the same pattern as the justification for types of method or block parameters.
Figure 6.13 Figure 6.14 andFigure 6.15give justifications for flow out of a method and block
through returned values.

Figure 6.16gives the justification rule for transitive flow judgements. It insists that for some

decomposition of the target into a number of components, there are simple flow judgements from

108

each component back into the target. Typicaflywill be a sum flow position [Z fs:], and the

implementation will choose a decompositionféfinto the elements dk.

6.6 Responders Justifications

There are three responders justification rules, corresponding to the three statement types that can
invoke a subroutine. They are R-SEND, R-SENDVAR, and R-BEVAL, and they are listéigjin
ure 6.17

In each case, the justification relies on having a type for each argument, receiver, block variable,
and selector variable that is present in the statement. These types are used to predict which methods
or blocks will be invoked by the statement when it executes. In R-SEND, the combination of the
type of the receiver and the selector that is present limit the number of methods that may be invoked.
In R-SENDVAR, the possible selectors are found usingoibesible selectorsfunction on the type
of the selector variable; this function assumes that its argument has a finite number of selector
types included, and it returns the list of selectors corresponding to those types. In R-BEVAL,
the possible responding blocks are similarly found by usingpibesible blocks function. For
both R-SENDVAR and R-BEVAL, if there are not a finite number of selectors or blocks, then the
function may not be used and thus the justification may not be used. In such a case the responders
judgement can only justified with JUST-PRUNE-RESP.

Once the responding methods or blocks are found, the argument types are used to find the
contexts under which the method can execute. Those contexts are split into multiple smaller contexts
usingcpa_split. Finally, the responders set is required to include each possible pair of a small

context and a method or block.

6.7 Senders Justifications

Senders judgements are justified indirectly, using JUST-ONE. A justified senders judgement must
account for every statement in the program.

Figure 6.18gives various trivial ways that a judgement may account for a statement. S-SELF,
S-LIT, S-SEL, S-VAR, S-NEW, and S-BLOCK rely on the statement not invoking any subroutine

at all. S-SEND-TRIV, S-SENDVAR-TRIV, and S-BEVAL-TRIV rely on the statement invoking

109

F-VAR-TRIV

F-LIT v # b[l]

[l :=literall xb > [VVvi]c—of [I":=Nlxb > [[VVvi]—of
F-NEW F-SELF-TRIV
[l :=new clasgxb > [[Vvi].—>f [:=self]xb > [[Vvi]c—>f

Figure 6.7: Trivial Flow Justifications for Variable Flow Positions

F-SELF-TRIVO

m # b[method] F-SELF-TRIV1
[:=selflxb > [Smi].—f [l :=literall xb > [Sm]c—f
F-SELF-TRIV2 F-SELF-TRIV3
[:=Il%b > [[Sm].—f [l :=new clas§ xb > [Smi]c— f
F-SELF-TRIV4 F-SELF-TRIV5

[l:=blockxb > [[Sm].—f [I:=send(l;,selly...In)]*xb > [[SmM]c—f

F-SELF-TRIV6

[l := send(l;,selvarly...Ip)] xb > [[Sm]c—f

F-SELF-TRIV7

[:=beval(lp,l1...Im]*b > [Smlc— f

Figure 6.8: Trivial Flow Justifications for Self Flow Positions

110

F-VAR F-SELF
v=blll V=bll [VVilgCTf v=bll] m=bmethod [V vigCf

[I"=1]%xb > [[VVvi]c—of [l :=selfl]xb > [Sm].—f

F-SEND
stat= 1, := send(lrcvr,S€l11...1m)
[staf xb selfr> [[VvVvi]c—of Yiel...m: statxb i [[Vvi].—>f
¥mse method spec$P) : statxb <ms>p> [[Vvi]c—of

[} := send(lrcyr, S€LI1, ..., In)] *xb > [[VVvi]c—f

F-SENDVAR
stat= 1) ;= sendvar(licvr, Iselvan [1. .. Im)
[stal xb selfr [VVi].—of Yiel...m: statxb i> [[VvVvi]c—f
¥mse method specgP) . statxb <ms>p> [[Vvi]c— f

[|| = Sendvar(lrcvr, Ise|var, I]_. .o Im)] * b > [V V]C - f

F-BEVAL
stat= I} := beval(lpiockvan 11 - - - Im) Yiel...m: statxb i> [[VvVvi]c—f
¥bse block specg¢P) : statxb <bs>r> [[Vvi]c—f

[l| := beval(lpiockvar l1. .. Im] *b > [[Vvi]c— f

Figure 6.9: Non-Trivial Flow Justifications

F-SEND-PARAM-TRIV
b[ly] # v

F-SEND-PARAM

[l} ;= send(lcur, S€LI1. .. Im)]cx * b ﬂ rseqJ rs = (my, Ctxy) . .. (Mp, CtXp)
Viel...p: [Vm.paramgk]]ty C f

[l ;= send(licur,S€Ll1... IR xb k> [[VVvi]c—o f

F-SEND-SELF-TRIV
fcvr #V

F-SEND-SELF

[l := send(lor. Sell1 ... Inm)lewk b oS rseJ rs=(my, ctxy). .. (Mp, Ctxy)
Viel...p: [:Sm]ux Cf

Figure 6.10: Flow into Method Invocation

111

F-SENDVAR-PARAM-TRIV
v # b[lk]

[|| = Sendvar(lrcvr, Ise|var, Il e Im)] * b kD [V V]C i f

F-SENDVAR-PARAM

d
[|| = Sendvar(lrcvr, Ise|var, Il e Im)]ctx * b ie—n—) rse j IS = (m]_, Ctxl) e (mp, CtXp)
Viel...p: [: S m.paramg$k] Jcx C f

[|| = Sendvar(lrcvr, |Se|var, I]_ e |m)] * b kl> [V V]C - f

F-SENDVAR-SELF-TRIV
v # bllrev]

[|| = Send(lrcvr, Ise|var, Il e Im)] * b SelfD [V V]C - f

F-SENDVAR-SELF
send

[} := sendvar(leyr, Isevan 11 - Im)]lex * b — rse T rs = (my, ctxy) . .. (Mp, CtXp)
Viel...p: [:Sm]uax Cf

[|| = Sendvar(lrcvr, Ise|var, Il N Im)] * b Self > [V \Y]C i f

Figure 6.11: Flow into sendvar Statements

F-BEVAL-PARAM-TRIV
v # blly]

[l := beval(lpock l1... Im)] *b k> [V Vvi]e— f

F-BEVAL-PARAM
VK=V Yiel...m:v =Db[l] stat= 1, := beval(lpiock I1..-Im)

stabxb -5 rse g rs = (blky, betx). .. (blkp, betxy)
Viel...p: [V blk.parmgK] :]pctx E f

[l := beval(lpock l1... Im)] *b k> [V vi]e— f

Figure 6.12: Flow intobeval Statements

F-RETURN-SEND-BADVAR
meth= lookup_meth_speg (Mcailed) v ¢ ret _vars(meth

[l := send(lrcvr,S€ll1...Im)] * b <Meaeg>> [V Vi]e— f

F-RETURN-SEND

d
methyy & sse g ctx = [c] meth= Mcajied
V(sstatsh scty € ss:
stat# sstatv sb#b v [: V O] Jrscq E f

[} ;= send(licvr,S€L11 ...)] * b <Megeg>> [[VVi]c—o f

Figure 6.13: Flow from methods int@end statements

112

F-RETURN-SENDVAR-BADVAR
meth= lookup_meth_speg (mcailed) v ¢ ret_vars(meth

[|| = Sendvar(lrcvr, Ise|var, I]_ e Im)] * b < rrba”ed > D> [V Vv :]C d f

F-RETURN-SENDVAR
stat= || = Sendvar(lrcvr, Ise|\/ar, |1 e Im)

d
methy e sse J ctx=[c] meth= Meajied

Y(sstatsh scty € ss:
stat# sstatv sb#b v [: V O] Jrscq E f

[|| = Sendvar(lrcvr, Ise|var, I]_ N Im)] * b < Mcalled > > [Vv :]C — f

Figure 6.14: Flow from methods int@endvar statements

F-BRETURN-BEVAL-BADVAR
block = lookup__block __spec (binvoked blockreturns# v

[ll := beval(lbiockvar I1-..Im)] * b < Binvokea>> [V Ve — f

F-BRETURN-BEVAL-METHRET
block = lookup__block__speG (binvoked blockretFromMethod

[|| = beval(|b|ockvar, Il . |m)] * b < binvoked> > [Vv]c — f

F-BRETURN-BEVAL

Stat= || = beval(lbk)ckvar, Il e Im)
send

blketx «—— sseJ ctx=[c] bk = binvoked
V(sstatsh scty € ss:
stat# sstatv sb#b Vv [} V D[I] Jrsctq E f

[|| = beval(|b|ockvar, Il e |m)] * b < binvoked> > [V \Y]c - f

Figure 6.15: Flow from blocks intobeval statements

F-TRANS
fcf
fiufou---ufy=1
Viel...p: 3f/: fi->fleg A ffCf

>f =%/

Figure 6.16: Transitive Flow Judgements

113

R-SEND
revr = blevr] Yiel...m:v;=Db[l]
rCVr ‘retq trovr € J Viel..m:VjaqtieJ (M, ..., my) = lookup®p(trcevr, SED
Yiel...n:c=<(m)self =ty ..., m.parmim] =ty >
Yiel...n:(Ciu,---.Cip)) = cpa_split(c) Viel...n:Vjel...p:(m,cgij)ers

send
> [l := send(licyr, Selectorly ... Ip)]cxx b — rs

R-SENDVAR
revr = blevr]
selvar= b[lsemval Yiel...m:v =Db[li] ICVI ‘fetx trewr € T selvar e tser€ J
Viel..m:ViaqtieJ (sek,...,sel) = possible_selectorgtse)
(M, ..., my) = appendlookup®s(ticyr, S€h), . . ., l00KUP* p(trevr, SEL))
Yiel...n:c=<(m)self =ty ..., m.parmm] =ty >
Viel...n:(Cju,---,Cip) = cpa_split(c) Viel..n:Vjel...p:(m,cij) ers

send
> [l := sendvar(lcyr, selvarly ... Im)lcexx b — rs

R-BEVAL
Yiel..m:VeqtieJ (Blblka)bcty, s - - - » Biblknlbety,) = possible blocks(tpiocks)
Yiel...n:c =< (blk) blki.parn1] =ty, ..., blk.parnim] = ty, >
Viel...n:(Ciy,---,Cip) = cpa_split(c)
Viel...n: Vjel...pi: (blk,cgj)ers

send
> [I = beval(lmock\/ar, I]_ N Im)]ctx * b —> IS

Figure 6.17: Responders Justifications

114

the wrong kind of subroutine, e.g. the fact tha&tval statements always invoke blocks and not
methods.

The non-trivial justifications are shown Figure 6.19 For send statements, the statement may
be left out of the senders set if either the selector does not match (S-SEND-BADSELECTOR), or
if there is a type for the receiver such that the method cannot be executed (S-SEND-BADRECYV).
Otherwise, the statement must be included in the senders set (S-SEND).

Forsendvar andbeval statements, a fferent approach is taken. The flow is traced forward for
the relevant selector or block. Only if the flow reaches the statement must the statement be included
in the senders set; if the flow does reach the statement, the statement is added to the senders set
with no further inquiry. The justification rules that implement this approach are S-SENDVAR and
S-BEVAL.

In S-SENDVAR, flow is traced forward from each statement creating a selector object for the
relevant selector. The functidfow selectis then used to extract the portion of the reached flow
position that matches the variable from which #emdvar statement is reading its selector. Note
that if there is no statement instantiating a selector object for the relevant selector, then one can
choosesel = Lctx and thus use S-SENDVAR to reject abndvar statements as potential senders.

In S-BEVAL, the functionblk stat is used to find the statement that creates the block, and then
flow selectis used to find that portion of the reached flow position that matches the variable the

beval statement reads its block from.

115

S-SELF S-LIT

send send

[l :=self]xb > bsgy «—— sS [l :=literal] xb > bsy «—— sS
S-VAR S-NEW
[:=1Txb > bsy & ss [:=new cnamé b > bsy < ss
S-SEND-TRIV
S-BLOCK (bs does not specify a method

[l:=block b > bsy < ss [l := send(leur.Selly... Il xb > by < ss

S-SENDVAR-TRIV
(bs does not specify a method

send
[l := sendvar(lyr, selvagly...Im)] xb > bgyi «—— ss

S-BEVAL-TRIV
(bs specifies a methpd

d
[:= beval(lpock l1...Im)] *b > by v ss

Figure 6.18: Trivial Senders Justifications

116

S-SEND-BADSELECTOR
sel# bsselector

d
[l := send(levr,S€ll1...Im)] *b > by e sS

S-SEND-BADRECV
revr = b[levr] ICVI 1oy trewr €
b.method¢ lookup™»(treyr, S€)

d
[l := send(lovr,S€ll1...Im)] *b > by e sS

S-SEND
stat=| := send(lrcyr,S€Ll1 ... I!m)
(stat b, Tcw) € SS

d
[l := send(lovr, S€ll1.. . Im)] *b > b e sS

S-SENDVAR
stat=| := sendvar(licyr, lseivan 11 - - - Im)
revr = blevr] selvar= b[lselva]
Y(ls := selb”) € bound statq®) : Af" :
([: V static_bindings(b”)[ls] 1 = 7 € T) A (f" E fse))
Y[: V selvar:]y € flow_selectfse, selvar) : 3(revr et € J) -
(Mealled & (I0OkUP™»(tr, s€D)) V ((stat b, c’) € s9

[1 := sendvar(loyr. lsovan l1... Im)] * b &> b o ss
S-BEVAL
stat= | := beval(lpiockvar 1 - - Im)
blockvar= b[lblockvar]
blk inst:= blk = blk _stat(b") [: Vblk_inst:]jctxy = fo € T
([V blockvar:ety, ---, [: V blockvar:]et,) = flow_selectfy,, blockvai)
Yiel...p: (statb,ctx) € ss

d
[l := beval(lpockvar 1. .. Im)] *b > b e sS

Figure 6.19: Non-Trivial Senders Justifications

117

CHAPTER VII

SUBGOAL PRUNING

The most distinguishing feature @DP is that it sometimeprunessubgoals of the main goal.
When it does so, it will mark all of those goals with a trivial result. Those results may be justified
with the -PRUNE rules described @hapter 6 e.g. PRUNE-TYPE. Then, since the -PRUNE
justifications require no judgements in their assumptions, many goals may be discarded from direct
consideration: any goal that was previously needed by one of the pruned goals, and is not needed
by any other goal, may be removed framwrklist and from theneeds andneededBy network.

Once goals have been pruned, irrelevant goals are located by a mark-and-sweep traversal of the
needs network, starting fromultimateGoal. Any goal that is not marked is removed from both

worklist and theneeds network.

7.1 Specific Pruning Algorithms

Pruning algorithms ilDDP are heuristics. It is diicult to be certain that one pruning algorithm is
better than another, just as it iffiult to be certain what the best variation of a particular algorithm

is. Below are described three algorithms that are implemented as part of the present work. Many
variations are possible, even within these three algorithms, but they are described the way they have

been implemented.
7.1.1 Stop Dead

The Stop Dead pruning algorithm lets the inference run either for a fixed number of updates or for a
fixed amount of time, after which it prunes the ultimate goal if no solution has been found yet. The
maximum number of updates or the maximum amount of time is a parameter of the algorithm.

The main advantage of Stop Dead is that it is very simple to implement. It also provides a

convenient benchmark to compare against other pruning algorithms.

118

7.1.2 Limited Relevant Set

The Limited Relevant Set pruning algorithm prunes enough goals so that the total number of goals
needed by the ultimate goal—thmelevant set-remains relatively small. The target size of the
relevant set is a parameter to the algorithm catlegheSize. Limited Relevant Set runs the pruner
when the size of the relevant set, plus the number of updates since the last pruning, grows beyond
twice pruneSize. This approach balances the time spent pruning, which is roughly proportional

to pruneSize, against the time possibly wasted due to analyzing goals that are going to be pruned
later.

When the pruner runs, it marks the fitsdunds goals that are found during a breadth-first
search of thaeeds graph starting from the ultimate goal. It then prunes all goals that are marked
and that depend on a goal that is not marked. All goals that are not marked are then discarded from
immediate consideration.

A small refinement of this approach is used in the implementation. As described so far, the
Limited Relevant Set approach could be viewed as measuring the distance of each goal from the root
goal and then choosing the closestineSize goals to the root. The refinement is a modification
of the distance metric. Instead of treating each subgoal relation as adding a distance of 1, some
subgoal relations add a distance of 4. Specifically, the “longer” subgoal relations are the responders
goals that are subgoals of message-send goals, i.e. the responders subgoal triggered when a goal’s
judgement is justified with T-SEND or T-SENDVAR. The number 4 was chosen after a few manual
trial executions; the optimal ratio is not known. Thieet of this refinement is to prune some
subgoals more readily than other subgoals. The intuition behind this approach is that such subgoals
tend to have a relatively minoffect on the root goal, compared to other subgoals, and thus they are
safer to stop pursuing.

The author expects the Limited Relevant Set to provide both good running times and usually
good precision in inferred types. The running time is indirectly limited by having a limited number
of relevant goals to process. However, that limited number is still in the thousands, and thus it would
seem that enough analysis is performed to find a precise inference in many cases.

Additionally, it is hoped that tuning the pruning threshold, gives fi@otive way to control the

119

running time and memory usage of the algorithm. The experiments descricéadpter 1discuss

this idea in more detail.
7.1.3 Shrinking Relevant Set

Shrinking Relevant Set is a generalization of Stop Dead and Limited Relevant Set. Shrinking Rele-
vant Set begins computation with a limited number of relevant goals, but as time passes (or as goals
are updated) the size of the relevant set is decreased. That is, each time the goal set is pruned, the
pruner can choose a smaller maximum size than the previous time.

There are a number of ways to schedule the size limit decreases as time passes. If the pruner
schedules just one decrease after a fixed amount of time, and that decrease limits the relevant set to
size 1, then the algorithm is a combination of the Limited Relevant Set and Stop Dead algorithms: it
uses a fixed limited size for a limited amount of time (or number of updates). If the pruner schedules
no decreases at all, then the algorithm is exactly the Limited Relevant Set algorithm.

A more sophisticated pruning schedule, driven by experimental data, is descriDedgdter 11

7.2 When to Prune

One final aspect of the pruning strategy is to spetifyen pruning should occur. The current
approach is to prune whenever the number of updates since the last pruning equals the pruning
threshold that was last chosen. That is, after a pruning, each surviving goal is updated once and then
another round of pruning is executed.

This approach balances the time spent pruning with the time spent updating goals. The hope
is that execution time is not overwhelmed either by pruning itself, or by uselessly updating goals
that will end up being pruned anyway. Alternatives, however, have not been investigated, and the

optimal frequency of pruning is not known.

120

CHAPTER VIII

CORRECTNESS OF DDP

8.1 Overview
This chapter proves the following theorem:

Theorem 2 (Correctness of DDP).If a set of judgementd is justified with respect to a program

P, thenJ is correct forP.

Essentially this theorem verifies that the voluminous and subtle justification ru@sagiter 6
result in a set of judgements that are correct according to the straightforward definitingpiér 5
and under the straightforward semantic&biapter 4 This choice applies systematic mathematical
analysis to the portion of the problem where subtle errors are easy to make and where mathematical
analysis is especiallyfiective.

Some portions of the algorithm’s correctness are left unverified by this theorem. In particular,
it does not verify that the dependency-driven worklist portion of the algorithm generates a set of
justified judgements. However, that portion of the algorithm is similar enough to proven worklist
algorithms for intraprocedural data-flow analygisthat we believe the reader will be confident the
algorithm generates sets of justified judgements even without a proof.

Additionally, the pruning algorithm is not addressed in this document’s mathematical analysis.
That omission, however, is an advantage: the algorithm generates correct judgements regardless of
what the pruner does. So long as the pruner limits its activities to pruning, i.e. to giving solutions to
goals that are conservative enough not to be correct without requiring any subgoals, the correctness

of the algorithm does not depend on the behavior of the pruner.

8.2 Lemmas

This section gives several lemmas that will be used in the full proof of correctness of the following

section.

121

The purpose of the Writing Variables Lemma for Types is to show that a type judgement remains

correct after a variable is written.

Lemma 8.1 (Writing Variables for Types). Let cfg = (act cnt) = step,(?), | be any label for a
writable variable ircfg, objectbe a valid object focfg, andvar ;. typebe a type judgement that is

correct forcfg. Suppose one of the following is true:
1. var # dynlookup_ vary(cfg, act) .
2. ctxdoes not matchct
3. objis of typetype

Thenvar ¢ typeis correct forwrite var(cfg,l,0bj).

Proof. Let cfg = write var(cfg, |, obj). Note thatall activations(cfg) = all activations(cfq),
i.e. there is no activation that is either created or destroyed by writing a variable. Consider each
act e all _activations(cfg) in turn. The definition irsubsection 5.5.@equires the following property

of act

ctx(act cfg) A var = dynlookup_ var,(cfg, act, var.label)

= read_var(cfg, act, var.label) € type

Let cidynog be the contour that is modified by the calhtoite var:
Cidmod = lookup__contoury(cfg, act |, false)

Suppose thattx(act cfg) and thatvar = dynlookup_ var,(cfg, act, var.label), because otherwise
the required property is vacuously true. There are several cases, all straightforward.
Supposd = var.label but that the contour that was written idférent from the contour that

will be read from inact
Cidmod # lookup_contoury(cfg, act |, false)

Then,write var would not modify the contourwill be read from inact, and thus readingfrom

actwill give the same object as before. Thus the required property will remain true.

122

Suppose thatar # dynlookup_ vary(cfg, act 1). If | # var.labelthen the object read frowfy
is the same as fromfg and thus the required property is trivially true. Otherwise, by the Unshared
Contours Lemma fronsubsection 5.1,4he contour modified by therite var must be diferent
from that read ircfg’, and thus the object read must still be the same in bigfhandcfg.

Suppose that all of the above cases are false anccthalioes not matclefg.act Then it is
impossible for botretx to matchact andcidneg to be the contour thdtwould be read from iract.
Since the type judgement is well-formed, any parameter mentionetk must be readable from
any activation whergar may be read. Since by assumption the conta@uris read from icidmgg,
the objects read for each parameter mentionetbdimust be the same in bo#tttandcfg.act. Thus,
ctxdoes not matchct and the necessary property is vacuously true.

Finally, if all of the other cases are false, thajecte typeand the contour read from &$dmog.

In this case, the necessary property is trivially true. m|

The following two lemmas are used to show that a flow judgement remains correct across one
step of execution, with respect to one particular object. The first lemma concerns the case where
a step of execution writes aftiérent object than the object of interest. Informally, when the first

lemma applies, it is said that “the flow of the object does not increase”.

Lemma 8.2 (Writing Different Objects for Flow). If object+ object, andl is a label for a writable

variable of configuratiorfg, and:

cfg = write var(cfg, |, objec)

then:

flowpogobject cfg’) C flowposobject cfg)

Proof. Note that the flow position of an object in a configuration may be computed by enumerating
the activations and contours of the configuration, selecting the contours and activations that bind
a variable or method receiver to the object, and then taking the union of the simple flow positions
designating those bindings.

In this case, the configurationfgandcfg are the same except that one contour has one variable

rebound. Letid be the id of the contour that changescidl does not bind to objectin cfg, then

123

same contours and activations will contribute the same simple flow positions to the overall flow
position ofobjectin bothcfg andcfg. Thus the union of those flow positions will be the same for
cfgandcfg'. If, however,cid does bind to object then there will be one fewer contributionafyy .

That is,

flowpog(object cfg) = (flowpogobject cfg) LI f)

for somef. Therefore,

flowpogobject cfg) C flowpoqobject cfg)

The second lemma concerns the case where the object of interest is written in a step of execution
usingwrite var. In this case, the flow position of the object does increase. The lemma is used to

show that a set of flow judgements correctly allows for the increase of flow position that occurs.

Lemma 8.3 (Writing Variables for Flow). Letcfg = (act cnt) = step,(?), | be any label for a
writable variable ircfg, objectbe a valid object focfg, G be a set of flow judgement$,= Ihs(G),

andf’ = rhs(G). Supposdlowpogobject cfg) C f. Let

var = dynlookup_ var,(cfg act |)

and

ctx = minctxp(cfg)
and

fpos=[: V var]cix
and

cfg = write var(cfg, var.label, objec)
If fposc f’, thenflowpodobject cfg) = (f L 7).

Proof. Again, one contour will be diierent incfgandcfg'. Call it cid. That contour will contribute

one new flow positiori.ig to the flow position obbject i.e.

flowpog(object cfg’) = flowpoqobject cfg) L feig

124

wherefgq is the new contribution. If one considers each way tatmight be determined with
dynlookup var, one sees that the resulting contributfgg will be exactlyfposas declared above.

Thus:

flowpogobject cfg’) flowpogobject cfg) L fpos
flowpogqobject cfg) Lifpos = fu f’

flowpogobject cfg’) fuf

Im

The next lemma gives a basis for reasoning about where selector objects for a particular selector

may be found as the program runs.
Lemma 8.4 (Flow Position of Selectors)Suppose that:
¢ selis any selector.

e For each literal statement:
([l := sel,b) € bound statqP)
that instantiates selecteel it is true thatdi : fi = [: V O[I] :] .
e Thejudgement$; -~ f/,..., fy > fjare correct for configuratiorstep () . . . step, 1 (P).
o fp=147,

Then, for any selector objesb € all_objectsy(step,,1(P)) whose selector isel both of the

following are true:

e There is am < n+ 1 such that the flow position sbin step,,(#) is subsumed by; for some

i
¢ sois within flow positionfp in step,,1(?).

Proof. The proof is by induction on the number of steps of execution.

The base case is trivial: there are no selector objects atalll iobjectsy(step(P)).

125

Assume, then, that the lemma is correct for configurationsi and we will show that it must
also be correct for configuration+ 1.

Suppose the next statement to executstep,(?) is a literal statemenit := sel under static
bindingsb, that instantiates the selector of interest. The statement creates a new selector object
whose flow position irstep,,,(?) is exactly [:V b[l] :]c for some context. Since ([:= sel,b) €
bound_statg%), there must be afy which subsumes [/ b[l] :], thus satisfying the first claim of
the lemma for the newly created selector object. Regarding the second claim, notice that whenever
f —* f’ holds true, it must be thet = f’. Sincefi —* f/, the flow position of the new selector
object must be subsumed lhyas well byf;. Sincefp = |_]ip=1 f/, the object must also be in position
fp.

Now consider any other selector objett € all _objectsy(step,,1(#)) whose selector isel
Inspection of the semantics will show that any such object must also be present in the previous
configuration, i.e.soc all _objectsy(step,(#)). Further, the flow position cfois undtected by the
execution of ;= sel Therefore, for any such objest, the inductive hypothesis leads immediately
to the same claims holding true for configuratios 1.

Finally, suppose some statement executes other than a literal statement instasglabimtpat
case, no new selector objects &l appear irstep,, (). The first claim of the lemma is satisfied
by choosing the samiés for each selector object that, due to the inductive assumption, must have
been available istep,(#). The second claim is slightly less trivial, because the flow positions of the
existingselselector objects may have increased. For any such aliydobwever, the first claim that
the flow position olsowas subsumed by one of thigs in an earlier configuration, when combined
with the lemma’s assumption tht—~ f’ is true in configurations Q.n + 1, leads to the second

claim. The flow position ofomust be subsumed by and thus also subsumed fiy o

The next lemma is similar to the last, except that it reasons about the location of block objects

instead of selector objects.
Lemma 8.5 (Flow Position of Blocks).Suppose that:

e bsspecifies any block i®.

126

o If

([I := blocK,b) € bound_statyP)

is the statement corresponding ltg then [:V Bl] :]+,, —* fp is true for configurations

stem(P), ..., step,1(P).

Then, for any closurdobj € all _objectsy(step,,1(#)) whose block isbs bobj is in the flow

positionfp in step,,1(P).
Proof. The proof closely parallels that for the Flow Position of Selectors Lemma. m|
8.3 Main Theorem
The proof is subdivided into proofs of the following propositions for arbitrary
F*(0)
T(0)
Tn) = R[N
SMATN+1)AF(n+1) = Sh+1)
TMARNMASH) = Th+1)
RNA(n=0vS(h-1) = F(n)

FFMAFM) = F'(n+1)

where:
e T(n) means that the type justificationsjnare correct for configuratiostep,(?).
¢ F(n) means that the flow justifications fi are correct for configuratiostep, ().

e F*(n) means that the transitive flow justifications jh are correct for the configurations

stepy(®P) throughstep, (P).

¢ R(n) means that the responders justificationg/iare correct for configuratiostep,(?).

127

¢ S(n) means that the senders justificationgfirre correct for configuratiorsgep,(#) through

step,(P).
Given these propositions, it is then straightforward to show by induction that:
¥n:T(n) AF(n) AF"(n) ARN) A S(N)

which is the desired theorem.
Each subsection below proves one of the above propositions to be true. In general, each sec-
tion assumes that neithstep,(#) nor step,,,(?) is halted, because otherwise the proof in that

subsection is trivial.
8.3.1 Transitive Flow Judgements in the Initial Configuration

It is to be shown that:

F*(0)

That is, it is to be shown that the transitive flow judgementg adre correct in the initial configu-
ration.

Forall f —»* f’ € 7, it must be shown that = f’. Each such judgement must have been
justified with either J-PRUNE-FTRANS or F-TRANS. If rule J-PRUNE-FTRANS was used, then
f’ = Tp, and thus it must be thdtC f’. If F-TRANS was used, theh C f’ is directly listed as an

assumption of the justification.
8.3.2 Type Judgements in the Initial Configuration

Itis to be shown that:

T(0)

That is, it is to be shown that the type judgementgadire correct in the initial configuration.

There are no parameters bound in the initial configuration, and thus any type judgements regard-
ing parameters are trivially true. The type judgements involving non-parameter variables must be
justified with either JUST-PRUNE-TYPE or JUST-ONE; they cannot be justified with JUST-CTX,
because only parameters have a type specified by a context. For any judgement that is justified by

JUST-PRUNE-TYPE, the type is and thus the judgement is trivially true. For any non-parameter

128

type judgement justified by JUST-ONE, the type must subsfundefinedObje¢t Since every
variable binding in the initial configuration binds Ki10bj, these judgements are correct in the

initial configuration.
8.3.3 Responders Judgements

It is to be shown that:

T(n) = R(n)

That is, it is assumed that the type judgements are correct in configurations\uarntd it must be

shown that these assumptions imply that the responders judgements are true in configuration
A responders judgemestat x b send rs must be justified by one of the rules R-SEND,

R-SENDVAR, or R-BEVAL, JUST-PRUNE-RESP, depending on the forrstaftand on whether

rsis non-trivial. To avoid triviality, suppose theg # T, thatstatis about to execute, thhfblock]

is the block of the main activation, and thatk matches the main activation ofg. Under these

assumptions, JUST-PRUNE-RESP could not have been used.

Considersend statements first. That is, suppose:
stat= [l := send(l;cyr, S€lectorly ... Im)]

The rule R-SEND must have been used. By the Lexical Binding Lemma, the variagles
etc., deduced fronh, €etc., by using the binding map are the same as would be found with
dynamic_bindings on the main activation offg. By the inductive assumption, and by the proofs
above for correctness of type judgements, all of the type judgements required by the assumption of
R-SEND are correct focfg. Thus, the object found by readithg,; is a member of typé,r, and
likewise the object found by reading ahys a member of typg.

Thus,lookup® will have correct information and so the method about to be invoked is one of
the methodsn, ... m,. Suppose the method ms;. Further, the context of the new activation must
matchc;. Due to properties ofpa_split, it must further be that the new activation matches one of

the split contexts . By the last assumption of R-SEND, it must be that
(mj,c(j,k)) €rs

Thus the judgement is correct.

129

The proofs forsendvar andbeval statements are close parallels. Note that the justification
rules implicitly require, respectively, that there are a finite number of possible selectors possibly
held byselvaror a finite number of blocks possibly held bjockvar. If this criterion fails, then

these justification rules cannot have been used and thus the responder setmust be
8.3.4 Senders Judgements

It is to be shown that:
SMATN+L)AF(nN+1)= S(h+1)

That s, it is assumed that the type judgements and transitive flow judgements are correct in config-
uration instep,,1(#) and that the senders judgements are correct in configurationssteg¢?),
and it must be shown that the senders judgements are also true in configaratibnLet cfg =
step,,1(®) andcfg = step(cfg).

Consider any senders judgem®tic Pl ss To avoid triviality, suppose thas # Ts. If
statis the statement about to executecfg, andb is the binding map of the main activation cff,

then there must be a justification that:

d
statx b > blkgx Pl SS

Suppose the justification is one of S-SELF, S-LIT, S-SEL, S-VAR, S-NEW, or S-BLOCK.
Then, statis not a message-sending statement and the judgement is true. If the justification is
instead one of S-SEND-TRIV or S-SENDVAR-TRIV, then the main activatioofgfcannot be an
activation forblk; blk is not the block for a method. Similarly, if the justification is S-BEVAL-TRIV,
then the main activation will not be for a method, wherelkgs for a method.

If the justification is S-SEND-BADSELECTOR, then the main activatiorcfogf must be for a
method other thablk’s method; the selectors do not match.

Suppose then that the justification is S-SEND-BADRECYV. Since, by assumption, type judge-
ments are correct, the receiver object for fledad must be a member of tyge,. By assumption,
the method oblk is not a method that may be invoked by any membey.@f and thus the method
of cfg’ must not be the method ofk.

If the justification is S-SEND, then the statement and context assamd thus the judgement

is correct.

130

Suppose the justification is S-SENDVAR. Then, by the Flow Position of Selectors Lemma,
the only selector objects iall objectgcfg) that match the selector s method are within the
flow positionfse as calculated in the assumptions of S-SENDVARdfincludes no variable flow
position matchingelvarand the current activation, then the selector sent bys#igvar execution
cannot matchvss method. Further, just as with S-SENDt,ifdoes not include any objects such that
the sendvar could invokebss method, then thisendvar execution cannot invokbss method.
Under all other circumstances, there will be a tuplesthat matches the current activationab.

In any of these cases, the senders judgement is still correct.
If the justification is S-BEVAL, then the proof parallels that for S-SENDVAR, only using the

Flow Position of Blocks Lemma instead of the Flow Position of Selectors Lemma.
8.3.5 Type Judgements

It is to be shown that:

TN ARNMASMN) = T(n+1)

That s, it is assumed that the type judgements and responders judgemé@nasefrue for config-
urationn, and it is also assumed that the senders judgemeifsasé true in configurations.0. n.

It must be shown that these assumptions aficsent to imply that the type judgements remain true
in configuratiomn + 1.

Let cfg = step,(#) andcfg = step,,1(#). Consider any type judgemewdr ;. typee J. By
assumption, this judgement must be justified by some justification rule.

If the judgement is justified by JUST-PRUNE-TYPE, thigpe = T. Since all objects are
members of this type, the judgement is correct.

If JUST-CTX rule is used to justify the judgement, then the result is true tautologically. If a
context matches an activation in a configuration, then any variable read in that activation must yield
an object in the type specified by the activation.

The only other possible justification is JUST-ONE. The rest of this section assumes that the
judgement is justified with JUST-ONE, and thus that there is a justification that the judgement
accounts for each statement in the program.

Suppose thatar is a parameter. If the statement about to executégis not asend, beval, or

131

sendvar statement, or if the current block is about to return a value, then the set of objects bound
to var in cfg will be a non-strict subset of the objects boundiéw in cfg. To see this, observe that
write var never modifies a parameter binding, and thus the only way to bind a new objexut to

is to create a new activation. In none of these cases is a new activation created.

Three cases remainvfr is a parameter. Suppose first that the statement about to execute is:

|| = Send(lrcvr, S@', Il e Im)

This statement can only be accounted for by T-SEND, which in turn requires that one of the rules
T-SEND-S and T-SEND-S-TRIV is used to justify that the judgement accounts for the execution
of this send statement. T-SEND-S-TRIV cannot actually be used in this case, however, because
it requiresvar not be a parameter. Thus T-SEND-S must have been used. T-SEND-S requires
that a senders judgement has been justifiedvéris method, and by assumption this judgement
must be correct focfg. Thus if var's method is the main method ofg, there must be a tuple
(stat ctX) among the senders that have been found, whimités the statement about to execute and
ctxmatches the main activation ofig. T-SEND-S thus requires that there has been a type judgement
for the relevant argument of thee=nd statement. By assumption, that type judgement is correct in
cfg. Since T-SEND-S requires thgtpesubsume this type, and since by assumptypesubsumes
the type ofvar in cfg, typemust also subsume the typewr in cfg'.

The final two cases whenrar is a parameter are those where the statement about to execute is

abeval or sendvar statement:

[| :=beval(lp,l1...lm)

| := sendvar(lyyr, selvarly ... ly)

In both cases, the reasoning exactly parallels thatéad statements.
Now suppose thatar is not a parameter.

Suppose thetatemengabout to execute is:

| ;.= self

The semantics of this statement are that the current receiver is written into védwiable

132

There must be some justification that the judgement accounts for this statement. If the jus-
tification is by T-SELF-TRIV, thervar # b[l]; since Mini-Smalltalk is statically bound, then also
var # dynlookup_ vary(cfg act I). Thus, by the Writing Variables Lemma, the judgement remains
true incfg'.

If, however,var = b[l], then the justification must be by T-SELF. Suppose thamatches the
current configuration; otherwise the Writing Variables Lemma is enough to prove that the judgement
remains true ircfg. By the assumptions of T-SELEjpemust be a supertype of the intersection of
two types: a cone type for the class the method belongs tostajek1 £]. By the Semantic Sanity
Lemma, the current receiver must in fact be an element of the cone type. Further, by assumption,
the current receiver is an element of tygi® self]. Since the receiver matches both types, it also
matches the intersection of those types, as systematic inspection of the definition of meet for types
(Figure 5.6 and contextsKigure 5.9 will verify. Thus, again by the Writing Variables Lemma for
Types, the type judgement remains correct in configuratiep,, 1(%).

Next, suppose that the statement about to execute is:
[=T

If var is notl, the variable being written, or iftx does not matclefg, then the Writing Variables
Lemma implies that the type judgement remains true. These two trivial cases appear for every
statement type below, and since the proof is the same, it will not be repeated.

The remaining case is tha#r is |, the variable that is written. There must have been a T-VAR
justification used to account for this statement, in which cgpewill be a supertype of somtgpée
wherel” :jerq typ€ € J. Since the type judgements gf are assumed to be true fofg, it must
be that the object read frohis in typ€. Thus the object is also itype and the Writing Variables
Lemma implies that the judgement remains correct.

Next, suppose that the statement about to execute is:
| := new chame
The object written will be of classname If var is bound tal, then T-NEW will have been used,

andvar will include the class type atnameand thus will include the newly created object.

133

Next, suppose that the statement about to execute is:
| := block

A new closure is created. Mar is written, then the type judgement will have been justified by
T-BLOCK, andtypewill include the type of the closure.

Next, suppose that a send statement is about to execute:
|| = Send(lrcvr, Sel, I]_ N Im)

or:

[} :=Dbeval(lp,l1...1m)

or:

In all three cases, only parameters are modified, and so these cases are trivial.

Next, suppose that the current block is ending. Suppose thati®mMethods true and that
the block returnd. By the Send History Lemma, either execution halts, or the variable written
was on the left hand side ofsend or sendvar statement of a previous execution. vdr is the
variable that is written, then the current method must have been one of'theonsidered in the
T-SEND-R or T-SENDVAR-R justification for this statement. Furthermore, the current activation
must be matched by one of the contes§g). Thus, the type returned must have been correctly
predicted, and that type will be included in the typevaf.

Finally, suppose that the current block is ending, that the blaeklromMethodss false, and
that the block returng The proof is similar to that for method returns. Theval statement is
correctly located, the context of the current activation was one of those that was predicted, and the
type of the left hand side of tHeeval statement will include the type that is returned.

All cases have now been considered. The type judgemefsrefmain correct across an invo-

cation ofstep.
8.3.6 Simple Flow Judgements
It is to be shown that:

RN A(N=0VvS(h-1))= F(n)

134

That is, it is assumed that the responders judgements affe true for configuration, and that,
unlessn = 0, the senders judgements are true in configuratienl. It must be shown that the
simple flow judgements Qf are true in configuration.

As usual, letcfg = (act cnt) = step,(#), andcfg = step(cfg). Consider any nomil object
objectwith a non-empty flow position ikfg. Also consider any subsgt of the flow judgements
in 9 such thaths(G) subsumes the flow position objectin cfg. It will be shown that the flow
position ofobjectin cfg’ will be subsumed bihs(@) Lirhs(G). Since the argument holds for agy
and anyobject the set of simple flow judgements ii must be correct focfg.

First, suppose the statement about to execute is:
| :=self

If actrcvr # object then the Writing Diferent Objects Lemma implies that the flow position of
objectin cfg will be subsumed by its flow position iafg, and thus the desired property is true.
Therefore, suppose that the current receivebigct i.e. actrcvr = object

Since by assumptiolins(G) subsumes the flow position object and since the left-hand side
of a justified flow judgement cannot tig, or a sum flow position, there must be a flow judgement
in G whose left-hand side is a self flow position for the current method and whose context matches

the current activation:

[: S cfgactblockmeth:]qx — f* € G

where ctXact, cfg)

Since this judgement has been justified, eitffet T, in which case the result is trivial, or the
judgement must be justified by JUST-ONE. Suppose it is justified by JUST-ONE. It follows from
the Lexical Binding Lemma that there must be a tuple$ self],b) € bound_statq#), where
b matches the static variables visible from the main activatiocf@f Thus, by the assumptions of

JUST-ONE, there must be a justification of:
[l :=self] xb > [: Scfgactblockmeth:]cx — '

Only F-SELF may be used to justify this assertion. Thidsmust be a variable flow position for

135

b[l]:

[V Hl] Jrenq E

By the Lexical Binding Lemmab[l] must be the same as the static variable found dynamically by
starting atcfg. Thus, by the Writing Variables Lemma for Flow, the flow positiorobfectin cfg
is subsumed bihs(G) LI rhs(G).

Next, suppose that the statement about to execute is:
| := literal

The semantics instantiate a hew object for the literal. Since the object is required to have a new
contour, it must be dierent fromobject and thus the Writing Dferent Objects Lemma applies.
The flow ofobjectdoes not increase after a literal statement.

Next, suppose that the statement about to execute is:
[:=1

Suppose the flow position abjectincludes a variable flow position fdt, in the minimum context

of cfg. (Otherwise, the flow position aibjectdoes not increase.) The subset of flow judgements
must include one judgemefit— f” wheref is a variable flow position fof'. Unlessf’ = T, (a
trivial case), the judgement must have been justified with F-VAR. THusust include a variable
flow position forl in a context matchingfg. Thus,lhs(G) U rhs(G) must include the flow position

of objectin cfg'.

Next, suppose that the statement about to execute is:
| :=new I’

The flow position ofobjectremains the same. The only flow position that increases is that of the
newly created object, arabjectcannot be that object becaust@ecthad a non-empty flow position
in cfg.

Next, suppose that the statement about to execute is:
| := block

Again, the flow positions of existing objects do not change fadgto cfg'.

136

Next, suppose that the statement about to execute is:
|| = Send(lrcvr, Se', Il e Im)

Consider each label among,, andl; ...l For each of these that is bound abjectin cfg,

there must be a judgemefit — f’ in G where f is a variable flow position for the variable the

label binds to incfg. These judgements must account for the statement about to execute, and that
accounting must be justified by either F-SEND-SELF or F-SEND-PARAM, both of which have
the same structure. Both F-SEND-SELF and F-SEND-PARAM require that there be a senders
judgement on the statement about to execute. By assumption, each such senders judgement is
correct incfg, and thus the method about to execute must be among those predicted by the senders
judgement. Each of these rules also requires that a flow position corresponding to the receiver
or appropriate parameter of the responding method is included in the right hand side of the flow
judgement. Thus, for each new positionafy that bindsobject there is a flow judgement iG

whose right hand side includes that position. Thus, all new bindingbjeftin cfg’ are included

in rhs(G), and thus the necessary criterion gis met incfg.

Next, suppose the statement about to execute is:
| := sendvar(lyyr, selvarly ... ly)

or:

l| :=Dbeval(lp,l1...1m)

The reasoning exactly parallels that fmnd statements, except that foeval statements, there is
no flow intoself positions.
Next, suppose that the block is ending. Suppose, to avoid triviality, that the vaviahle
that is being returned from the block is bounddbject Thus, there must be some judgement
f —» f’ € G wheref is a variable flow position fovare; in a context matchingct. By the Send
History Lemma, there is a statement that, in a previous step of execution, invoked the method that is
currently returning. There must be an invocation of F-RETURN-SEND, F-RETURN-SENDVAR,
or F-BRETURN-BEVAL to allowf — f’ to account for returns to this statement from the cur-

rent method ofcfg. It is impossible that one of the trivial rules, F-RETURN-SEND-BADVAR,

137

F-RETURN-SENDVAR-BADVAR, or F-BRETURN-BEVAL-BADVAR, was used, becaussyet
is in fact among the returned variables of the current method.

All three of the non-trivial F-RETURN rules have the same pattern. They require that there is a
senders judgement [ff for the returning method. By assumption, senders judgements are correct
in cfg, and thus the senders judgement required by the rule must include the statement where control
is returning. Thus, the rule requird$ to hold a variable flow position for the variable on the left
hand side of the statement where control is returning. ThHuisicludes the new binding afbject

and the necessary criterion is met.
8.3.7 Transitive Flow Judgements

Itis to be shown that:

F(n)* AF(n) = F*(n+ 1)

The assumption is that both the simple and transitive flow judgemersare correct for steps
0...n. Itis to be shown that the transitive flow judgementgsjoére true for stepsQ.n+ 1.

Refer to the definition of correct sets of transitive flow goalsubsection 5.5.3Let ¥ be the
set of transitive flow judgements iff, and letG be any subset of . Let objectbe any object
in configurationi < n other thanNilObj with a non-empty flow position istep(#). To avoid

triviality, suppose that:

flowpogobject sten(P)) C Ihs(G)

By the inductive assumption, it is known that for angi...n
flowpog(object step;(#)) C rhs(G)

It must be shown that:

flowpogobject step,,1(?)) C rhs(G)

Each transitive flow judgement ig@ must be justified, either by rule F-TRANS or by rule
JUST-PRUNE-TFLOW. If any of them are justified by JUST-PRUNE-TFLOW, then the target
of that judgement must bes,, andrhs(g) must also bery,. In that case, the criterion is trivially
satisfied. Thus, suppose that none of the goals are justified by JUST-PRUNE-TFLOW, and therefore
that all of them are justified by F-TRANS.

138

To meet the requirements of F-TRANS, for each judgemfent:* f’ € G, there must be
a decomposition off” into simple flow positionsf; ... fj, where, for eachf;, there must be a
simple flow judgement! — f” € 7. Let H be the set containing all of these requirgd— f”
judgements but no others.

The flow position obbjectin step,(#) is subsumed bihs(H). Since it was just proven that the
simple flow judgements are correct f&tep,(#), and sinceH is a subset of the flow judgements of
g, it must be that the flow position @bjectin step,,,1(#) is also subsumed birs(H) L rhs(H).
By the construction ofH, it must be thaths(H) C rhs(g). Sinceg holds only justified flow
judgements, it must also be thds(H) C rhs(@). Thus, the flow position obbjectin step,, (%)
is also subsumed s(G).

Therefore, the correctness requirement is satisfie@gsfand object SinceG and objectare

arbitrary, the set of all transitive flow judgementsdhmust also be correct.

139

CHAPTER IX

IMPLEMENTING DDP

DDP has been implemented in Sque|| a dialect of Smalltalk. This chapter is of interest for
others implementin@DP. First, it describes how to support the features of full Smalltalk that are

not in Mini-Smalltalk. Second, it gives implementation suggestions for various issues that arise.

9.1 Analyzing Full Smalltalk

The paper thus far has describB®P as an analysis of Mini-Smalltalk, not full Smalltalk. This
chapter describes the modificationddBP required in order to support full Smalltalk and thus be

part of a practical tool.
9.1.1 Primitive Methods

Full Smalltalk hagprimitive methodsn addition to normal methods. A primitive method has the
usual attributes of a method, plus additionally a reference to swimmétive routinein the underly-
ing interpreter. Whenever send or sendvar method invokes a primitive method, the designated
primitive routine is executed instead of the block of the method. If the routine is successful, then
control passes directly back to tkend or sendvar statement. If the routine is not successful,
then the block of the method executes after all, just as if the method were not primitive. The block
is called thefail code of the method, because it is only executed if the interpreter routine has not
succeeded for some reason.

Correct analysis requires that the analysis account for the possible execution of primitive meth-

ods. For each primitive, there are four possible approaches:
e Use the general framework described below.
e Use a conservative approximation suitable for any well-behaved primitive routine.

¢ Include specialized support for the method.

140

¢ Ignore the primitive routine.
The first approach is to provide the following information to the algorithm:

e typeWhenSentTo:withArgumentTypes:, a function mapping a list of argument types and

a receiver type to the type returned by the routine.

e canFailWhenSentTo:withArgumentTypes:, a function mapping a list of argument types
and a receiver type to a boolean designating whether the primitive can fall into the method’s

fail code when invoked with objects of the specified types.

e receiverEscapes, a function designating whether the receiver can flow to an arbitrary flow

position after this routine is invoked.

e argumentEscapes:, a function designating whether a particular argument can flow to an

arbitrary flow position after the routine is invoked.

Adjusting the justification rules to account for primitive methods is straightforward when they
can be accurately described with the above for attributes. The T-SEND justifications need to check
the contribution of the primitive to the type returned by a method, and they need to ignore return
statements in the method if the primitive does not fail with the supplied arguments. The F-SEND
family needs to check whether flow into the method can escape; if so, then the target of the relevant
flow judgements must bes.

The second approach is to use a single conservative approximation for all of the above proper-
ties: the return type is, the routine can fail regardless of the argument types, and the receiver and
arguments have escaping flow. So long as the primitives are well behaved, this approximation will
yield correct results. As a few examples, well behaved primitives may not modify the stack of run-
ning activations, invoke some other method, or modify the program; on the other hand, well behaved
primitives may access external state and create new objects that do not have instance variables.

The third approach is to add specialized support to the implementation. The rare cases that such
support are necessary are describeslibsection 9.1.3

Finally, some primitive routines may be safely ignored. Certainly, if the primitive is known to be

only an optimization of the method’s fail code, then the primitive may be ignored. Additionally, a

141

method’s primitive may be ignored if, for some reason, the method is assumed never to be invoked.
In this case the correctness of the analysis depends on whether the method is invoked. It is better to
have fewer methods assumed not to be invoked, but it may be impossible to reduce the number to
zero. Some methods, such as those for constructing a program and those for debugging a process,

are simply too dficult to model &ectively.
9.1.2 Instance Creation

Thenew statement in Mini-Smalltalk is implemented in full Smalltalk as a primitive method called
#basicNew. This primitive is well behaved, in the meaning specified in the previous section, and
thus it can be supported IBYDP with the usual mechanism for handling primitives.

To see that this approach results in precise analysis, one must consider the way classes are
represented in Smalltalk. In Smalltalk, classes are normal objects. All objects have a class, and the
class of a normal class object is another class object caltedtaclass (The class of a metaclass
is the normal class MetaClass.) Each metaclass has a single instance throughout the execution
of any Smalltalk program. Thus theypeWthenSentTo:withArgumentTypes: method for the
#basicNew primitive can determine with accuracy which class is being instantiated: the type of
a class will be a class type where the class is a metaclass, and each metaclass has only a single

instance, in this case the class that is about to be instantiated.
9.1.3 Language Operations as Primitive Methods

Some elements of syntax in Mini-Smalltalk are primitive methods in full Smalltalk. To analyze a
primitive method,DDP treats it as if it included Mini-Smalltalk code for the syntactic element it
represents. For example, any method that references the block-evaluation primitive would be treated

as the following Mini-Smalltalk method:
value

| block result
block = self.
result = beval block.

return result.

142

Similarly handled are the primitive methods feendvar. The primitive method fomhew is

handled diferently, as described in the previous section.
9.1.4 Multiple Processes

Mini-Smalltalk programs have a single process. Full Smalltalk programs may start new processes
by invoking the #ork primitive method on a block object. The analysis needs to account for the
fact that the statements in the block may execute even though there is no direct flow of control to
the statements other than through tfe#k method.

In fact, the justification rules o€hapter 6do account for the execution of such statements.
Senders-of goals to methods invoked by statements in the block, will consider message-send state-
ments in the block as possible senders. Type goals for variables assigned in the block, will account
for those assignment statements. Flow goals for variables accessed in the block will account for
flow due to those statements executing.

Note that the situation is fierent for any Smalltalk implementation where processes are started
with blocks that have one or more arguments. Then, statements that access the parameter of the
block, may try to find a type judgement on one of the parameters of the block. Without care, those
type judgements might judge the type to be In such a Smalltalk, the justification rule for the
type of a parameter of a block, must also check whether the block ever flowsfimti grimitive
method; if so, then an appropriate type—possibly-must be unioned to the type judged for the

parameters of the block.
9.1.5 Initial State

Mini-Smalltalk programs begin with an empty heap and start execution at a specific method. Full

Smalltalk programs begin with a populated heap of objects and with a number of running processes.
The justification rules need to be adjusted so that they account for this initial state. The required
modification is simple: simply adjust the rules MIN-PARAMETER and MIN-VAR to insist that

the judged type be larger than the initial type found by scanning the initial populated heap and the

execution stacks of the initial processes.

143

9.1.6 Arrays and Other Collections

Arrays in Smalltalk are supported by a combination of two implementation features: class defini-
tions may include a declaration that a classmdexable and there are primitive methoda#: and
#at : put : available to read and write to the indexed slots in an instance of such a class.
DDP handles arrays conservatively by ignoring thdexabledeclaration, and by treating the
#at :and #At : put : methods pessimistically: they might return a value of any type, and any object

that is #put : into an indexed slot flows twy,.
9.1.7 Array Literals and sendvar

Literal statements in full Smalltalk may create arrays that contain selector objects. Since the
contained selector objects might eventually be used byralvar statement, it is important for

the analysis to account for them. A conservative approach is to maintain an extra table named
arrayLiteralsWithSelector in addition to the other tables describedGhapter 9 This table

gives all array literal statements in the program that contain a specified selector. The analysis uses
this table to determine whether it can accurately predict what statements will invoke a particular
method; if the method’s selector appearsutyarray literal in the program, then it is impossible to

accurately find the senders and thus the method should be given a sender set of
9.1.8 Flow of Literals

Many literals in Smalltalk break the requirement of Mini-Smalltalk literal expressions that each
evaluation yields a dierent object. Every evaluation atrue, for example, yields the exact same
true object in full Smalltalk. As a result, justified flow judgementddDP do not account for the
full flow possibilities of these values. It is possible for these valudkow in the carefully defined
sense ofChapter 5in other ways than through assignment statements, message sending, and so on.
It is possible for them to appear at remote locations in the program that are unrelated by the usual
flow calculations.

Such a situation is beyond the supported usadel®®, however. Under normal usage, flow is
only computed for blocks and selectors, not for any other values, much less values that appear as

literals. Each block appears only once in a program, and thus it is immune to the possible problem

144

under discussion. For symbols, the standaBP rules (such as S-SENDVAR) simultaneously find
flow for all occurences of a symbol of interest, thus eliminating the possibility that a symbol literal
will appear in a location outside of the computed flows.

The current theory of flow and of literal expressions has been chosen for intuitiveness and brief
description. Under normal usage@DP, even on full Smalltalk, it provides an accurate description.
It would be possible, instead, to allow Mini-Smalltalk literal expressions to evaluate to the same
object multiple times, while redefining the correctness criterion of flow judgements to ignore such
appearances, and thus obtain a more complicated theory that is closer to full Smalltalk. However,
the added complication has been deemed too high a price for th€ pagatra assurance from the

theory.

9.2 Implementation Issues
This section describes several issues that arise while implemddDiRy
9.2.1 Maintaining Tables About Syntax

The JUST-ONE rule, the basis for most non-trivial justifications, is phrased as requiring an enumer-
ation over all statements in the program. However, such an enumeration is not necessary in practice,
if one has some lookup tables computed in advance. Most of the statements in the program may be
accounted for with the -TRIV rules that require no assumptions. Thus, a general strategy of imple-
menting the justification rules is to focus attention on those statements for which it is non-trivial to
account.

The following lookup tables are useful for this purpose:

e methodsImplementing, which maps each possible selector to the list of methods in the
system that implement the method. This is useful in responders-to goals where the receiver

type isT.

e expressionsSending, which maps each selector to the listsghd statements that send the

selector. This is useful for finding theend statements that may invoke a method.

e selectorLiterals, which maps each selector to the list of statements assigning that selec-

tor to a variable. This is useful for finding teendvar statements that may invoke a method.

145

e assignmentsDefining, the list of statements that assign something to a variable. This is

useful for type goals.

e expressionsReading, the list of statements that read from a variable. This is useful for

flow goals.

Note that these tables can be maintained incrementally as the program is modified. The neces-
sary updates are straightforward and fast across common program changes such as adding methods,

changing methods, removing methods, adding classes, and redefining classes.
9.2.2 Parse Tree Compression

Storing expanded parse trees for every method in the system takes considerable storage, both in
number of bytes and number of objects. Yet, each executi@bDdé is likely to access only a small

fraction of all the parse trees in the image. In-memory parse tree compression is a useful technique

to address these two observations: it lowers the number of bytes required, greatly lowers the number
of objects required (because the compressed parse trees can be stored as binary arrays), and, because
few parse trees are needed per execution, typically does not cause a large slowdown.

The general approach is for the lookup tables to refer to expressions and methods indirectly.
Instead of holding object references to the expressions and methods, they hold a reference to a tuple
of the method'’s specification (class plus selector) plus the integer index of the expression within the
method. Decompressed parse trees can be cached during each exechiiz® &6 that they are

only decompressed once per execution.
9.2.3 Supporting External Source Code

Ideally, the implementation can analyze code regardless of whether it is the code of the currently
running image. If an implementation is flexible, then it supports interactive programming tools
both for the installed code and for code stored outside the image. Additionally the test cases for
the implementation are able to test the analysis against entire code bases that have been carefully
crafted to exercise the implementation.

One challenge of such a flexible implementation is that there are multiple classes nhamed Object,

multiple classes named Block, and so on—one class for each code base that is potentially analyzed.

146

In order to access the particular class relevant to the current executibbBf many methods

must have a parameter that specifies the list of classes for this execution even though they do not
have such a parameter in the on-paper description@P. The number of such methods can be
reduced, however, if class BlockType holds a reference to the appropriate Block class for the current

execution, and the SelectorType class likewise holds a reference to the appropriate Selector class.

147

CHAPTER X

CHUCK: A PROGRAM-UNDERSTANDING APPLICATION

Chuck is a new program understanding tool for Squeak, developed as part of the present work as an
example application dDDP. It is an extension of the Refactoring BrowsB#] that includes new
gueries only answerable with data flow.

Chuck has been posted on the Internet and is now a standard load option of Squeak.

10.1 Overall Interface

Chuck is thoroughly integrated with the standard program browsing tools in Squeak. Squeak already
includescontext menusvhich allow a user to highlight an item of interest in the code and then
perform queries on those items. Chuck uses the same context menus but adds additional queries
to them, queries that require type inference. For exanfigire 10.5shows a user asking Chuck

for the type of an expression. The integration continues in the other direction as well. Answers to
gueries are given using standard Squeak tools whenever a tool is available to display the answers.
For example, the response kigure 10.4uses the same message-listing tool that is used by the

standard Squeak senders-of tool.

10.2 Available Queries

Chuck implements two new queries and two enhanced versions of standard Squeak queries. The
two enhanced queries are used to trace call graphs statically. They are type-sensitive versions of the
implementers-oénd senders-ofjueries. The standard implementors-of query lets a programmer
find all methods whose name matches a selection, whereas the standard senders-of query locates all
message-send expressions that send the specified message.

The enhanced implementors-of query finds only those methods that, based on DDP type anal-
ysis, might actually respond to the selected message-send expression. As an extreme example, if a

user browses to claBasicLintRuleTest’s new method in Squeak 3.7 and selects the message

148

send ofinitialize, the standard query shows 756 potential responders. The enhanced query
shows only one. Another example can be seen by comp&rguge 10.1andFigure 10.2

Similarly, the enhanced senders-of query returns only those message-send expressions that,
based on type information, may invoke a specified method. To repeat the previous example in
reverse, the standard tool shows 581 possible sendeBagifcLintRuleTest’s initialize
method, while Chuck shows 13. Another example can be seen by compagag 10.3and
Figure 10.4

The two new queries are used to trace data figywe querieandforward-flow queriesA type
query lets the user select an expression or variable and then find, based on analysis information,
what types the expression or variable may hold at runtime. FifjQrgshows the programmer
asking for a type, and Figud®.6shows how Chuck displays the answer. Similarly, a forward-flow
query lets the user find the expressions or variables in the program that values may reach, if they
start at the selected expression or variable. Such a query is useful, for example, to see where a
constant in the code is ultimately usdédgure 10.7shows the programmer asking for the flow of an

expression, anfligure 10.&isplays Chuck’s answer.

10.3 Browsing Derivations and Trying Harder

Chuck not only returns a judgement in response to a query, but can also return the support for
a judgement. One may point to any judgement returned, and find out the other judgements the
analyzer used to reach that conclusion. One may then recursively tgsgjudgements to see

how they, in turn, are justifiedzigure 10.6demonstrates this functionality.

Chuck’s derivation browser provides two additional navigation links beyond the explanations.
Support for a judgement usually involves reference to other elements of the source code. By select-
ing a judgement, the programmer can cause the code browser to jump to the relevant source code in
the standard code browser. Agalitigure 10.6demonstrates this functionality; the user is about to
view the code underlying one of the judgements Chuck has produced.

Second, the user may select any judgement and ask the analyzer to try harder on that particular
goal, i.e. to use a higher pruning threshold. This ability lets Chuck give fast, imprecise answers

by default, yet still allow users to allocate more time for a question if the question is important

149

enough, and the first answer imprecise enough, to warrant the extra resource expenditure. The user
in Figure 10.9s requesting that the main goal be tried agairFigure 10.10the user specifies that
greater resources should be used. The res#iisre 10.11which is a precise result thanks to the

increased resources.

150

(X2 Implementors of data: [5] [@io
FlashKeyframe data: jaccessing} -
GraphMorph data: faccessingt Al
SMTPClient data: {private protocol}
TIULInk data: jaccessing}
aveEditor data: faccessingt
v
data: anObject L
data « anObject =
v

Figure 10.1: The standard tools show the methods that potentially respond to a message-send
statement.

] Responders to data: (miol
SMTPClient data: {private protocol} L}
A
v
data: messageData L
"send the data of & message" =
"DATA <CRLF="
| cookedLine |
"inform the server we are sending the message data”
self sendCommand: DATA',
self checkResponse.
"process the data one line at a time"
messageData linesDo: [mmessageline |
cookedLine « messageline.
{cookedLine beginsWith: ', 7 if True: [v

Figure 10.2: Chuck only displays potential responding methods that are consistent with its type
inferences.

151

(%) Senders of data: [20] Hi0
AlFFFileReader edit jother? L)
Bouncingatomshorph showlnfectionHistory: fothert —
GraphMorph clear jcornmands

GraphMorph initialize {initializationt

Graphhorph loadSoundData: fcommandst

GraphMorph openiaveEditor {*sound}

v
edit L

led!

ed « WawveEditor new .

ed dara: channelData first.

ed loopEnd: markers last last.

ed looplength: (markers last last - markers first last) + 1.
ed openlnWorld.

Figure 10.3: The standard tools show the statements that potentially invoke a method.

(] Invokers of SMTPClient>>data: @0
SMTPClient mailFromitomext: fpublic protocoli a

-
mailFrom: sender to: recipientlList text: messageText B

"deliver this mail to a list of users. NOTE: the recipient list should be a collection =
of simple internet style addresses - - no '<=' or ' stuff"

self mailFrom: sender.
recipientList do: [rreciplent |

self recipient: recipient].
self data: messageText.

Figure 10.4: Chuck only displays potential senders that are consistent with its type inferences.

152

Betind...(f)
o

gefind again (g)

® 26t search string (h} k @

Scamper 4 Playir 4| emptyDropPolicy: L

Network-Mail Reader-C & Plavyir @do again (j) A hasCards Al

Hetwork-Mail Reader-3 | Sames 4Pundo (z) layout:

Network-Mail Reader Samel . newsead

Network-Mail ReaderF | Same 0¥ (2} removeallCards

Network-Mail Reader-4 | Tetris cht [£3) zeed

Chuck-Type Inference Tetrisk & seed:

Morphic-Games Tetrisi LLJpaste (¥ stackingOrder:

Morphic-Games-Chess Word: __lpaste... stackingPolicy

Morphic-Games-atomic ™" 5 stackingPolicy:

. L 7| insta 50 it (Q) L |gbnecttraming 0
Eprint it (p)

trowse | senders || implementor: L}j . ingt vars | class vars| source
QIUSPECI it (i}

i i a
stackingPolicy QExplore it I} e

debug it
@ accept i3)
eancel

show bytecodes

+ stackingPolicy

more. ..
RE - extract method
RE - extract method to component

RE - selection 3

trace flow

Figure 10.5: A user asks for the type of a variable.

XIE) Inference Derivation EIE)]

+ Tvpe of [PlayvingCardDeck. stackingPolicy] is { UndefinedObject *stagger #*single ®altStraight *straizht | a
PlayingCardDeck stackingPolicy &
<Top> retry goal
{ UndefinedObject #stagger #*single *altStraight #straight } explgrg the zoal itself

w justification (2)
b Type of [®¥stagger] iz #*stagger
= Type of [aSymbol] iz { #straight #altStraight #single }
asymbal
<Tap:
{ #oraight #alifiraight #zingle }
w justification {4}
p- Twpe of [#altStraight] iz #altStraight
p-Type of [#straight] i #straight
b- Senders of PlavingCardDeckstackingPolicvw: are: Sender Set {[{{Classes.PlavingCardDeck) new) colo
p-Type of [#zingle] iz #single
p-all goals referenced (4)
p-all goals referenced (2)

o4 >

Figure 10.6: Chuck displays the type of a variable.

153

Gefind... (£}

® e find again (g) H @

Collections-Sequenceat-® | Heap : # flush -
Collectione-Text & Inter setsearchisTee Ry & flushAllSuchThat =
Collections-Arrayed Link @do again (i) init:
Collections-Streams Map] @undn iz isEmpty
Collections-SkipLists Orde: makeRoomAatEnd
Collections-Weak Shar J'copy {a) next
Collections-Support Sorte | fiext0rdil
Graphics-Primitives Ecu‘ (x) nextdrHilSuchThat:
Graphics-Dizsplay Objec [Ipaste (v} nextPut:

Transformatic peek

- ingt | _|paste... - | size .

£F4d0 it (4

L}gprim it ip}

Object subclass: #*Sharedfueus
inztanceVariableNames: 'c QmSPect)

browse | senders | implemento inst vars) class vars| source
-

n accessProtect readSynch’

classVariatleNames: * Qexplore it (1)
poolDictionaries: ' detug it
category: ‘Collestions-Sequ Vaccept ts)
@ cancel v
I provide synchronized commu show byiecodes Processes, An object iz sent _
by sending the message nexth ze next, If no object has been =
zent whet a next message iz 2 e e0o will be suspended until one iz
sent, EB - extract method
EEB - extrast method t0 compotent
RE - selection 3 ‘
infer type

Figure 10.7: A user asks where a variable’s contents flow.

(% Inference Derivation @0

w Flow from Sharedlueue accessProtest reaches {dSharediueue accessProtest in <Top: Flow[SH
Sharedueue.accessProtect &
<Top>
{<Isharediueue.accessProtect in <Topsl Flow[Semaphoreswait, <Semaphore:] <Sharedluew

B~ justification
B all goals referenced (73

a4 3

Figure 10.8: Chuck displays the locations where a variable’s contents flow.

154

] Inference Derivation ()

B Type of [Browser.editSelection] is Top
browse the goal's target

explore the goal itzelf

Figure 10.9: Sometimes Chuck fails due to lack of resources.

Browser.editSelection ?

pruning: 3000

(find answer)

question: What iz the type of: ‘

Figure 10.10: The user may “retry goal” and specify that more resources should be used the next
time.

(I Inference Derivation @0
p Type of [Broweer.editSelection] iz { Boolean++ UndefinedObject #editComment #newilass #e8
y

Figure 10.11: This time, the greater resources allow Chuck to infer a precise type.

155

CHAPTER XI

EMPIRICAL VALIDATION OF DDP

The DDP algorithm has been evaluated empirically. There are two claims that the experiments

attempt to validate:

e The algorithm scales to produce useful results on real programs with hundreds of thousands

of lines of code.
e Subgoal pruning gives significant improvements in the performance of the algorithm.

Additionally, the experiments attempt to determine good choices of the pruning threshold.

The first claim is the most interesting and is the bulk of the thesis. It shows that there is an
effective algorithm for finding type information in large dynamic programs.

The second claim is that subgoal pruning is worth the complexity it adds to the algorithm. A
possible alternative is to only allow pruning the primary goal; the algorithm would be simpler, but
it is expected that the precision would decrease.

This chapter describes the experiments that have been performed, gives the results from those

experiments, and analyzes those results.

11.1 Issues
11.1.1 Better versus Good

Most researchers experimentally validate a program analysis by implementing it and then comparing
one system that uses the analysis to another that does not. Such researchers might compare the
results of the analysis directly to the result of another analysis. Alternatively, such researchers
may modify an application to take advantage of information from the analysis and then compare
the performance of the application when it does or does not use the analysis. For example, they
might implement a dead code remover using information from the analysis, and then measure what

percentage of a sample program is removed by the dead code remover.

156

Neither of these approaches work well for testibigP.

First, there truly are no competing algorithms to compare against, as described in the related
works section. It would be possible to implement competitors myself, but there would still be a
guestion of whether my implementations were at fault instead of the general algorithm. No serious
contender has been implemented for Smalltalk itself, and thus any existing algorithms would need
some amount of adaptation. Challengers could continuously request variations and improvements
on the adaptations, and the question would always remain whether the next improvement might in
fact make the algorithm practical.

Further, 1 know of no existing applications, such as compilers, that can take advantage of type
inference. It would be possible to implement such applications, but that requires a large amount of
work.

To put it briefly, this analysis area is simply too new for comparative validation tdfeetive.

Thus, instead of comparinQDP to other algorithms, the experiments evaluate whether the
algorithm performausefully wellfor some applications, not whether it perforimstterthan some
other algorithm.

The next two sections discuss what usefully good performance would meBfr
11.1.2 Performance of Demand-Driven Algorithms

DDP, like all demand-driven algorithms (s&hapter 2, finds one fact or a small number of facts
for each execution. In contrast, exhaustive algorithms find a complete set of facts about an entire
program. Demand-driven algorithms are typically slower for analyzing entire programs, but faster
for analyzing small portions of programs.

When measuring a demand-driven algorithm, it is the performance per fact inferred that matters.
The experiment thus measures performance per inference instead of the performance for an entire

program.
11.1.3 Performance of Type-Inference Algorithms

There are two aspects of performance of a type-inference algoripeedandprecision An algo-
rithm with better speed finishes more quickly. An algorithm with better precision produces infer-

ences that are more specific, e.g., “x is a Smallinteger” has better precision than “x is a Smallinteger,

157

a Largelnteger, or a Float".

Measurement of speed is straightforward: simply record the amount of time required for the
program to complete. An algorithm that takes half the time as another performs twice as well as the
other.

Measurement of precision might befftiult, at least in principle. What is a precise type infer-
ence? What does it mean for a type to be, saigeas precise as another?

In practice, experience witBDP suggests that most results strike observers as either very
precise or very imprecise, with uncertain cases being marked as imprecise. This strategy is con-
sistent with the goal of verifying the algorithm to produce usefully precise results for program-
understanding applications. This strategy does not produce a verified, objective measure of preci-
sion, but does give eonservativeneasure of precision that can be used to verify that the algorithm
passes a certain threshold of precision.

The following specific rules were used to classify each type inferred for a variable:

T is imprecise.

[UndefinedObjetts precise. It means that the variable is never assigned a value, and thus it

only holdsnil when the program runs.

e Any type that is the union dUndefinedObje¢twith a simple class type, selector type, or

block type, is precise.

e A union type is precise if, according to human analysis, at least half of its component simple
types may arise during execution. For this analysis, the exact values of arithmetic operations
are not considered; e.g., any operation might return a negative or positive result, and any
integer operation might overflow the bounds of Smallinteger. Notice that this is the only rule

where human analysis is required; the other rules leave no room for interpretation.

¢ If none of the above rules apply, then the type is imprecise.
11.1.4 Usefulness

Some correct type inferencers are trivial and useless. For example, an inferencer could report type

T for every query it is posed. Since every value is within typesuch an answer is always correct,

158

and thus the inferencer is correct as well. Nevertheless, such an inferencer is useless. A compiler
writer would never use such an inferencer even if it was fully implemented and only required a
single function call to invoke. A tool author would never waste screen space on an “infer type”
button that invoked such an inferencer. Correctness is not enough for a useful algorithm.

DDP is more sophisticated than this trivial algorithm, but is it truly useful? Perhaps it is equally
useless, only in a more complicated way? How can one distabéefrom the trivial algorithms?

Since it is impossible, as discussed in the previous section, to shoDbfais betterthan some
other algorithm, one cannot simply show tH2DP is better than some existing non-trivial algo-
rithm. Instead, one must show tHaDP is sufficiently goodthat it is non-trivial. The present work
shows thaDDP is sufficiently good that it may be callagseful

Usefulness is a ghiciently strong claim to establidhDP as one type inference algorithm that
finds a non-trivial amount of correct type information. Given the long history of type inference
efforts, this level of performance is high enough to estalilBfP as a first algorithm in its domain
to compare against.

Usefulness, however, is not a strong claim. It is not a claim that the tool will be useful for all
purposes or even most purposes. In fa&ddP does not appear useful for dead code removal. It is
also not a claim thaDDP is extremely useful, but instead only that it is somewhat useful, even for
applications where it is useful at all.

From the opposite point of view, to disagree with a weak claim is to make a strong claim in
the opposite direction. The opposite of the claim sought in the present empirical work, is the claim
that DDP is completely useless for all purposes. Readers should be careful before rejecting the
weak claim of usefulness for some purpose, lest you commit yourself to accepting a strong claim of
complete uselessness.

Trying to establish usefulness causes complications. One complication is that usefulness de-
pends on theféort a particular user is making. A screwdriver is very useful for someone who wants
to screw things together, but quite useless for someone who wants to prove a mathematical theo-
rem. To address this complication, the present work examines multiple typical applications of type
inference and evaluates the algorithm’s usefulness for each of these applications. The hope, needed

to satisfy the claim in the thesis statement, is to fiaP useful for at least one typical application.

159

Another complication is that usefulness is not a sharp criterion. Much like with beauty, wealth,
and precision, there is no obvious threshold for usefulnesger@nt users will simply have dif-
ferent standards. To address thiffidulty, this document invites readers to speculate on levels of
performance they believe would befscient for a type inferencer to be deamed useful. Try make
that decision before reading the final performance data; otherwise, you will lose some of your ob-
jectivity.

Different readers will chooseftirent standards of performance. Some, doubtless, will choose a
high enough standard thBDP does not meet it. Such readers must conclude that the present work
merely moves the field closer to a useful algorithm, without yet achieving the grail of a usefully
precise type inferencer. Arffert is made, below, to specify thresholds that most readers will agree
are suficient.

Overall, usefulness is not a convenient criterion. Nevertheless, it is an important attribute of any
tool, especially a tool that is claimed to be a first success in its (narrow) field. It is worth making the
effort to address it. To contrast, it would be no improvement of the present work to omit discussion
of the topic of usefulness, simply because it i§idilt to talk about or because the conclusions are
not as rigorously established as a proven mathematical theorem. It would be no improvement to

focus all dtorts on the clearest problems. Sometimes, important issues are hard to discuss.
11.1.5 Performance Criteria for Usefulness

This section provides some target thresholds we believe &ieisnt to call a type inferenceiseful
The reader is invited to choose thresholds of your own before reading the author’s choices.

A threshold is specified for each of the following applications:

Programmer queries. A human programmer trying to understand a program, asks the tool

guestions as they occur.

Optimization of individual modules.

Optimizations that require a small subset of the possible facts. For example, a compiler might

want points-to analysis only for arrays that are indexed from within loops.

Dead-code removal.

160

For the first three applications, the performance of the algorithm on an entire program is irrele-
vant. For the last, the performance on the entire program does matter, but for consistency the target

will be re-calculated as a per-query target.

e Programmer queries: Each fact must require no more than one or two minutes to find. Prefer-
ably they require only a few seconds. Precise information must be found for at least one

quarter of the queries, or programmers are unlikely to use the tool.

e Module optimization: A set of facts for an entire module requires no more than an hour, and
preferably less than a minute. Precise information must probably be found for at least one

tenth of the queries or so, or the analysis will not be worth thate

e Targeted optimizations: The requirements are variable. They depend on how small a subset
of the facts the optimizer needs and on how large of a program fragment the optimizer is

targeted at. Again, probably at least one tenth of the queries should yield precise information.

e Dead-code removal: A type inference for every message-send expression in the entire pro-
gram must be found in no more than a week, and preferably no more than a day. Assuming
there are on the order of one million send statements in the program, each query must be
answered in one second. It is unclear how many queries need precise information; perhaps

one tenth would be shicient, though one would prefer a much higher precision.

These performance goals are not sharply defined—e.g., if it takes two hours instead of one to
analyze a module, the algorithm is still worth something—but they give a rough idea of what level

of performance is nheeded for a demand-driven algorithm to be useful for various applications.

11.2 Alternative Experimental Designs

There are a number of experiments that could be performddli Since these experiments are
typical in the field of program analysis, it is worth discussing why those experiments have not been
performed orDDP.

The next section describes the experiments that have actually been perforBdPon

161

11.2.1 Comparison to Competitors

A very common approach for experimentally testing a program analysis is to directly compare the
performance of the algorithm to the performance of other algorithms that solve the same problem. If
DDP performs better than the competitors, then it would showli® is performing well enough

to be interesting.

As described irChapter 2there are no reported analyses for a dynamic language in such large
programs, and there are no context-sensitive algorithms that even appear to scale. There are, how-
ever, context-insensitive algorithms that have linear complexity and thus should scale in principle.

It would be possible to implement one of the linear-complexity algorithms and thus do a direct
comparison.

The primary dfficulty with this approach is that the linear-complexity algorithms are still lin-
ear in the program size in both time and memory. Mipss so far to modify such algorithms
for Smalltalk and run them against a sample large program, have resulted in the machine paging
constantly to disk before the algorithm even finished generating all of the constraints, on a ma-
chine with 512MB of RAM. More engineering work and better machines, might produce a practical
implementation, but the requiredtert appears to be substantial.

An additional dificulty is that these algorithms are not described for Smalltalk. Thus, while the
general approach of the algorithms transfer, some cleverness is still needed. As one example, there
is no syntax in Smalltalk for instance creation; instead, one senda¢iwavessage to a class object.

This is no challenge at all for a context-sensitive algorithm, but without care, a context-insensitive
algorithm would conclude that all senders afeft return the same type. Likewise, blocks are
invoked by a message send, not by syntax, and those executions as well should get some care in a
serious implementation. Thus, it requires considerable work and cleverness to transfer any of the
existing algorithms to Smalltalk, and for all of thdta@t, it is unclear which algorithms will in fact

produce results at all to compare against.
11.2.2 Comparison to Competitors in Other Languages

Instead of porting program analyses to Smalltalk, an experimenter couldpséttto other lan-

guages. In particular, one could target the Cecil languagiegnd thus perform a direct comparison

162

against the mature analyses that are part of the Vortex compiler for CeBIDf performs better
than the other analyses, then the experiment would shovidRtis performing well enough to be
interesting.

The first dificulty with this approach is that it again requires a substantial implementafah e
The experimenter must learn the alternative language thoroughly enough to perform analyses in it,
adapt the analysis to work in that language, and then fully implement the analysis.

The second is that it renders the defense of the thesis less cohesive. It would be perfectly
acceptable to this researcher to prove B2P works in some other dynamic language, e.g. Scheme
or Cecil. However, the rest of the defense speaks to the thesiBbfatvorks in Smalltalk. Most
significantly, the proof of correctnes€liapter 8 refers to Smalltalk, and the programming tool
(Chapter 1pis implemented in Smalltalk. Changing the thesis, requires not only re-implementing

DDP itself, but also performing again most other components of the defense of thesis.
11.2.3 Performance for Smaller Programs

It would be possible to use smaller Squeak programs, to implement competitors knowrtliecbe e

tive in smaller programs, and then to compare the performanb®&fto the competitors. IDDP
produces precise results in smaller programs, then the experiment would sh®D & effective

in small programs. Additionally, the experiment wousldggesthat DDP would also produce pre-

cise types for larger programs. One would need to perform an additional experiment to show that
DDP does complete in reasonable time for larger programs.

There are three fliculties with this approach.

First, it requires a substantial implementatidfod. The competing algorithms are not imple-
mented in Smalltalk, and thus they must be modified to work in Smalltalk and also implemented
from scratch.

Second, this experiment does not stand alone. In order to learn from this experiment, one must
perform an additional experiment to learn (hopefully) tDBXP does terminate in reasonable time on
larger programs. Without that experiment, then there is no evidence reg@mifg effectiveness
on larger programs.

Finally, the experiment provides only indirect evidence about the desired thesis. This author is

163

interested in larger programs than have been proven to be supported by any published algorithm,
but the experiment reports results on small programs. If one has limited time for experiments, then

surely one should seek an experiment that gives direct evidence.
11.2.4 Performance of Applications

Instead of comparing the analysis against other analyses, it would be possible to use the analysis to
improve some application such as a compiler or a dead code remover. Then, one could compare the
performance of the algorithm witDDP to the performance it attains without it. If the applications
perform significantly better when usii@DP than when not using it, and if the applications do not
take an unreasonable amount of time when they codddR, then the experiment would show that
DDP is performing usefully well.

The main dificulty with this approach is that a substantial implementati®oreis required.
There is no optimizing compiler for Squeak, the dialect of Smalltalk used in this research. Writing
an entire optimizing compiler is clearly an overly extrenttoe if the only goal is to validate a
program analysis. Porting to other Smalltalks is a signific#liore as well. Further, it is unclear
which Smalltalk to port to. Cincom VisualWotkas a good runtime, but it is unclear whether its
owner would let a researcher from the general public access that runtime systen683#f has
a good runtime, but the language iffdient enough to run into the portindfittulties described in
the previous section.

Squeak does have a simplistic dead code remover. HowRi?,as it stands is not organized
for effective dead code removal, because the algorithm has been studied for the application of pro-
gram understanding. Dead code removal requires analyzing all of the program that is liRnd
per se is moreféicient at targeting individual expressions. As discusse@hiapter 13it remains
future work to modifyDDP to be dfective in contexts where a large number of queries are being
submitted to it. That #ort is too substantial to perform merely for the sake of an experimental
effort. Further, it does nothing to teBDP for use in program understanding tools, which is this
researcher’s primary interest in type inference.

Finally, Squeak does include several code browsers, and those code browsers include various

Lhttp://smalltalk.cincom.com

164

http://smalltalk.cincom.com

gueries used for program understanding. Some of these queries can be improved BPBiagd

one could perform an experiment to see how much, if any, those queries are improved if they use
DDP. This experiment would produce the same strength of justification as the experiment actually
performed, with the same amount dfat, and thus only smaller matters decide between them. |
chose the experiment described below, because it gives more direct evidence, and because it seems
like a better contribution to produce a tool that solves a problem not known to be solvable, than to

improve on an existing tool.
11.2.5 Summary

In summary, all of these approaches require a substantial amount of extra implementation work.
Additionally, most of the approaches causfidilties with the thesis. Either they require a change
to the thesis that would render the defense less cohesive, or they require a change to a thesis that is

less interesting to this researcher.

11.3 Actual Experimental Design

This section describes the experiment actually performed. It directly addresses the two claims

described at the beginning of this chapter.
11.3.1 The Program Code Tested

The experimental executions include queries on Squeak 3.7, a Smalltalk system that, when the type
inferencer is loaded, has 358,872 non-blank lines of code, 2485 classes, and 48,715 methods. The
program includes a large variety of software such as a web browser, an Internet Relag@hat [
client, a port of the Alice systenl§] for end-user programming in three-dimensional spaces, and
the platform-independent portion of the Squeak interpreter it38J{33].

The experiment infers a type for each instance variable in nine components of the program, as
summarized inrable 11.1 A total of 765 variables are analyzed. The components cover a variety
of application domains and a variety of authors.

The algorithm is given no information about where execution might begin or about which por-
tions of the code base constitute an application or a module. Thus, the algorithm sees a single large

300,000-line program even though each query will analyze only a subset of the program.

165

Table 11.1: The components of the program analyzed.

Instance

Name | variables| Description

rbparse | 56 Refactoring browser’s parser

mail 73 Mail reader distributed with Squeak

synth 121 Package for synthesis and manipulati
of digital audio

irc 114 Client for IRC networks

browser| 32 Smalltalk code browser

interp | 173 In-Squeak simulation of the Squeak v
tual machine

games | 135 Collection of small games for Morphi
GUI

sunit 10 User interface to an old version of SUn

pda 51 Personal digital assistant

11.3.2 The Trials

Each trial uses the implementation to infer a type of one variable. The trials vary the following

parameters exhaustively:

e They choose a variable from the instance variables in the packages that are tested.

e They choose a pruning threshold that is either infinite or that ranges among 12 values from 50-

10,000. If an infinite threshold is chosen, then no pruning is performed; instead, the algorithm

is executed for 5 minutes on each query. If no result has been found within the time limit,

then a result oft is returned.

For each trial, the amount of time required is recorded, and the inferred type is recorded and classi-

fied as precise or imprecise.

11.3.3 The Machine

The trials are executed on a machine with an Intel Celeron CPU, clock speed 2.40 GHz, and 512

MB of RAM.

166

Table 11.2: Speed of the inferencer. Entries give the average speed in seconds for inferences of
instance variables in one component, using the given pruning threshold. For example, when the
pruning threshold is 50, thebparse package requires an average of 0.9 seconds to infer a type
for one of its variables. The “n.p.” column is for executions where no pruning was performed,
and instead the implementation was given 5 minutes per variable to infer a type if it could. The
“overall” entries on the last line are averaged across all individual type inferences; thus, they are
weighted averages of the component averages, weighted by the number of instance variables within
each component.

| [50150 300 500 1k | 1.5k| 2k | 3k | 4k| 5k 7.5k] 10k | n.p.|
rbparse| 0.9 2.0 | 40| 56] 10.1] 15.0] 20.5] 27.3| 48.0] 439 73.2] 120] 155

mail 18| 36| 79| 82|144|196| 27.3|37.1|51.0| 85.9| 89.6| 140 | 219
synth 10| 35| 58| 79|125|21.3| 251 | 355| 41.9| 55.8| 123 | 153 | 375
irc 045| 15| 20| 29| 48| 70| 6.9|10.6| 427|414 | 45.7| 48.1| 62.3

browser| 0.82| 3.6 | 6.7 | 10.1| 15.0| 20.4| 27.8| 68.3| 52.4 | 60.1| 133 | 167 | 207
interp 046| 1.2 | 51| 48| 84| 11.3|16.3|24.0| 27.9| 31.8| 51.8| 63.5| 232
games | 0.82| 22| 35| 57]108| 159|194 | 278| 34.0| 36.6 | 62.1| 73.9| 161
sunit 10| 15| 44| 49|112|144|11.4|296| 319 | 36.6| 52.1| 76.1| 47.4
pda 068 29| 51| 7.7|18.2|27.3| 395| 50.7| 67.0| 72.0| 115| 199 | 271

Overall [0.83] 2.3] 4.7 6.0 10.6] 15.6] 20.2| 29.7| 40.8] 47.8] 77.0| 102| 209]

Table 11.3: Precision of the inferencer. Entries give the percentage of inferred types considered
by a human as “precise” for instance variables in one component using one pruning threshold. For
example, when the pruning threshold is 50, tharse package gets precise types inferred for
25.0% of its variables. The “n.p.” column is for executions where no pruning was performed,
and instead the implementation was given 5 minutes per variable to infer a type if it could. As in
Table11.2 the “overall” entries are averaged across inferences, not averaged across the averages in
the table.

| [50] 150] 300] 500 1k[15k[2k | 3k| 4k | B5k][7.5k] 10K np.]
rbparse | 25.0 | 28.6 | 28.6] 28.6] 30.4| 30.4] 32.1] 32.1 33.9] 32.1] 33.9] 33.9] 30.4

mail 28.8|34.2|370|38.4|41.1|37.0|37.0| 39.7| 37.0| 41.1| 37.0| 38.4| 31.5
synth 28.1] 31.4| 38.8| 38.8| 38.8| 40.5| 40.5| 43.0| 43.8| 43.0| 46.3 | 47.1 | 34.7
irc 69.3| 728| 75.4| 76.3| 77.2| 781| 79.8| 81.6| 81.6| 80.7| 79.8| 80.7 | 77.2

browser| 9.4| 125|125| 125|156 15.6 | 15.6| 15.6| 18.8| 15.6| 125| 156| 9.4
interp 179 21.4| 22.0| 22.0| 22.0| 254 | 29.5| 31.8| 31.8| 31.2| 31.8| 31.2| 29.5
games | 51.1| 51.1| 56.3| 60.0| 60.0| 62.2| 71.1| 74.1| 73.3| 73.3| 74.1| 74.8| 61.5
sunit 40.0| 50.0| 60.0 | 50.0 | 60.0| 60.0 | 60.0 | 60.0| 60.0| 60.0 | 60.0 | 60.0| 60.0
pda 19.6| 21.6| 235| 235| 255| 33.3| 33.3| 35.3| 35.3| 37.3| 35.3| 37.3| 21.6

Overall | 34.6] 37.6] 40.7] 41.5] 42.4] 44.1] 47.0] 49.1] 49.1] 49.0] 49.1] 49.8] 42.3]

167

Speed of Inferences

243\ 2

nodes S000 nodes 10000 nodes

Figure 11.1: Graph of the inferencer’s speed. The horizontal axis is the pruning threshold, and the
vertical axis is the average time required for each inference. The thick black line gives the overall
average, while the gray lines each give an average for one component.

168

Precision of Inferences

D

0 nodes S000 nodes 10000 nodes

Figure 11.2: Graph of the inferencer’s precision. The horizontal axis is the pruning threshold, and
the vertical axis is the percentage of the inferences hand-classified as precise. The thick black line
gives the overall percentage, while the gray lines each give a percentage for one component.

169

11.4 Summary of Results

The measured speed of the inferencer is tabulatefhbie 11.2and summarized as a graph in
Figure 11.1 The measured precision of the inferencer is tabulatd@lote 11.3and summarized in
Figure 11.2

The following types, which are obviously precise, comprise 93% of the inferences that were

classified as precise:
e (57.6%)IC] L lUndefinedObjegtfor some clas€.
¢ (30.5%)[UndefinedObjetti.e., the variable is never initialized from the code.
e (9.4%)[Trug u [Fals¢ LI {UndefinedObjegt
e (5.4%)Smallinj u [LargePoslIit [LargeNeglritL JUndefObjed

11.5 Analysis and Conclusions

The experimental results lead to a number of conclusions.

First, the level of pruning matters. Varying the pruning threshold causes the precision to vary
from 346% to 498%, and the average time required per inference to vary from 0.83 seconds to
209 seconds. The pruning threshold is certainly fa@céive knob for tuning the algorithm, both for
speed and precision.

Second, there are two pruning thresholds that seem to give a useful level of both speed and pre-
cision. A tight pruning threshold of 50 gives high speed (0.83 seconds) and high enough precision to
be useful (346%). Such a choice would be good for all applications describedlasection 11.1:5
program understanding, targeted optimization, and (barely) dead code removal. Such a choice seems
especially sensible for program-understanding tools, where a user is waiting and every second mat-
ters. A threshold of 2000 gives reasonable speed (20.2 seconds) and a higher precision (47%). Such
a choice would be good for an optimizing compiler, which can oftéord to spend several sec-
onds if it gives a better compilation. Higher thresholds than 2000 continue to slow the inferencer

down but do not give much higher precision; the maximum precision attained in the experiments

2Class names have been abbreviated.

170

was 498% percent. No setting of the threshold gives performanfiecgnt for practical dead-code
removal.

Third, subgoal pruning is valuable in general. While the experiments that do no pruning, i.e.,
those summarized in the “n.p.” columns Tdble 11.2andTable 11.3 do find a large number of
precise types (43%), they require an average of 209 seconds per query to find them. One could
instead use subgoal pruning with a threshold of 1000, and thus find slightly more types that are
precise (420%) while requiring an order of magnitude less time per query (10.6 seconds). Alter-
natively, one could choose a pruning threshold of 10,000, thus finding significantly more types that
are precise (48%) while requiring roughly half of the time per query (102 seconds).

Finally, there is one anomaly in the data. Some of the trials with no pruning, require more
time than the 300-second maximum. The number of such trials is not yet known, and the amount
of overrun is not yet known, either. It appears that the implementation, for some reason, does not
always stop immediately at 300 seconds. A better implementation would fare better in the no-
pruning trials. The data should be re-analyzed, with all timings greater than 300 seconds being

replaced by the 300 seconds that an improved implementation would have achieved.

11.6 Informal Notes

Perusal of the full experimental results, published separately, provides various intuitions about the
performance of the system. We briefly share some of those intuitions in this section. Much of the
future work inChapter 13onsists of exploring these intuitions more fully.

A large amount of code is not overtly polymorphic. The best-performing packages—IRC, Mor-
phic Games, and SUnit—include a large number of variables that are ultimately assigned an ex-
pression such asFteeCellBoard new”. While program-analysis researchers enjoy considering
sophisticated code patterns, a large amount of practical code uses simpler idioms. The present work
thus reemphasizes an observation from analysis researchers tracing back to at least Knuth’s study
of typical FORTRAN programs44].

The best-performing package, IRC, additionally has many unused variables. WhBim#er
is queried for the type of an unused variable, it instantly infers a tygemdefinedObje¢t The

presence of unused variables further emphasizes the above observation about simple code being

171

surprisingly common.

On the other end of the spectrum, the Browser package provides a number of examples that use
both integer arithmetic and round-trips through the highly polymorphic GUI libraries, in particular
the class PluggableListMorph. In principEDP has enough polyvariance to bffextive in this
case, but for some reason the analysis is not succeeding. Therefore, the browser package provides
excellent example code to investigate for future improvements of the justification rules.

Finally, it should be noted that examples appearing to be simple to a human often require at
least one surprisingly sophisticated and precise step in the derivation. A salient example is the
connection variable of clas§RCChannellListBrowser. The values stored into this variable are
ultimately created by either the express#ai £ in a method of clasfRCChannel or the expression
“IRCConnection new.” Both of these expressions are trivial to analyze, but the path between those
expressions and thnnection variable include the parameter of a method nameictialize:.

Finding the type of the parameter to thisitialize: method requires analyzing 45 potential
senders ofinitialize: and determining that only one of them is feasible. If the analyzer failed
in this step of the derivation and considered 2 of the 45 to be feasible, then the inferred type would
almost certainly at least double. Additionally, each additional feasible sender adds an extra chance
for the analyzer to fail and return type—a substantial risk in an analysis that finds precise types

for top-level queries roughly 30% to 50% of the time.

11.7 A Pruning Schedule for Interactive Use

Even though the trials all used a fixed pruning threshold, i.e. the Limited Relevant Set algorithm
from Chapter 7 the experimental results also shed light on the design of a more sophisticated
schedule for the Shrinking Relevant Set algorithm.

With the Limited Relevant Set algorithm, the choice of fixed pruning threshold gives a rough
control on the time required and the precision obtained. This control is loose. For example, as
reported above, a threshold of 3000 nodes yielded an average time of 30 seconds per query, but the
slowest of those queries required over 10 minutes.

For interactive use, these occasional large response times are not acceptable. We would prefer

to provide consistently fast responses even if the responses are not as precise as possible. A crude

172

way to obtain consistently fast responses would be simply to halt the algorithm if a response has
not been found within some time limit and report failure. That is, run the analysis, and if it requires
more than, say, five seconds, terminate it and report that no information was found.

A more graceful degradation of precision than this approach may be obtained by taking advan-
tage of the structure of thBDP pruning algorithm. The tool begins by using a pruning threshold
of 3000. If no result has been found within three seconds, then the pruning threshold is decreased
to 50 and the algorithm is given two more seconds to complete. Usually the algorithm finishes
in a fraction of a second with a pruning threshold of 50, but in the rare case that it requires two or
more seconds, the algorithm is terminated after all—by lowering the threshold to 1—and the system
reports that no information was found.

Further analysis of data from the above experiments show that the cruder approach, that of using
a threshold of 3000 and then stopping after five seconds, yields an answer—precise or imprecise—to
40% of type queries. The remaining 60% would necessarily have to be answered with the maximal
type, T, becausédDP does not provide sound information if it is halted early. The more gradual
approach, with a threshold of 3000 for 3 seconds followed by 50 for 2 seconds, finds answers to
a total of 94% of the queries: it answers 37% in the first three seconds, and 57% after reducing
the threshold to 50. Both approaches have a maximum execution time of five seconds, but gradual
reduction of the threshold yields a complete analysis of many more queries (94% versus 40%).
Further, the expected analysis time for the gradual-reduction schedule is 2.6 seconds per query,
versus 3.3 for the drop-dead schedule.

With this pruning schedule, the time required per query does not depend on the speed or load
of the underlying machine. All queries finish in five seconds. Instead, the speed and load on the
underlying computer féect thequality of results thaDDP produces. A slower machine will still
finish each query in five seconds but will produce less precise results.

This schedule has been designed according to experimental results, but it has not been experi-
mentally tested. It remains future work to determine whether this schedule produces the high level

of precision we expect based on the available data thus far.

173

Table 11.4: Calculation of expected time for the gradual-reduction pruning schedule.

e total queries: 765
e at 3000 threshold:

— queries finishing in under 3000 ms: 281

— total time for those: 110946 ms

— queries finishing in under 5000 ms: 305

— total time for those: 206968 ms

— (ueries that take over 3000 ms at threshold of 3000: 484
— queries that take over 5000 ms at 3000: 460

e at 50 threshold:

— queries that are under 2000 ms at threshold 50 and also over 3000 ms at threshold 3000:
438
— total time for these: 365521 ms
— queries that are both over 3000 ms at threshold 3000 and over 2000 ms at threshold 50:
46
e drop-dead at 5 seconds should require 327/qoesy:

206968+ 460+ 5000
765

e gradual decay requires should require 264 lguesry:

110946+ 365521+ 484+ 3000+ 46« 2000
765

174

CHAPTER XIli

PROPOSED LANGUAGE CHANGES

A fundamental goal of the present research project has been to perform analysis in an unmodi-

fied, extremely dynamic programming environment that makes no concessions to ease of analysis.
This goal is valuable, because it demonstrates that, given suitablgyr@micsemantics includ-

ing memory safety, type-tagged data values, and (dynamic) type safety, it is possible to perform a

substantial amount of data-flow analysis. Nevertheless, there is no need for future software devel-
opers to work with a language at this extreme. This chapter briefly explores some language changes
and research directions that seem likely to improve the performance of data-flow analysis without

harming the overall character of the programming environment.

Initialized Variables Variable bindings in Smalltalk are automatically initialized to hold the spe-

cial valuenil whenever there is no other value to give them. This automatic initialization applies to

all forms of variables other than parameters; parameter bindings are created at the time of a message
send and thus their initial values are specified in the actual arguments of the message. Automatic
initialization is necessary, given the rest of the language definition, in order to provide the valuable
property of memory safety. It is impossible in Smalltalk to access memory in a way that violates the
expected memory model. If variables were not automatically initialized, then it would be possible
for a variable to hold an arbitrary bit pattern and for a program that accidentally uses that pattern as
an object reference to corrupt memory.

Automatic initialization has a negativéfect on type inference, however, as pointed out previ-
ously by Agesen3]. A correct type inferencer must declare that all variables other than parameters
can holdnil, i.e. typefUndefinedObjegt This is an immediate loss of precision if the variable is
defined to a more useful value and the automatically suppli@ds never used. Additionally, it can
cascade into other precision losses for data-flow queries that depend on type queries on variables.

Looking ahead, a keen example of the problem is the new type-specific flow goals that are forced to

175

be added irChapter 14

A property that can be exploited to improve this situation, however, is that many variables in
typical programs do not have the automatic initialization value read from them. Every time such a
variable is bound, it is assigned a new value before the program ever reads from the new binding.
Automatic initialization is important for safety, but it is frequently not needed for expressiveness.

Agesen exploits this property by performing an extra analysis before the type-inference proper
in order to statically detect many cases where a variable’s automatically initialized value is not used.
He reports a substantial increase in precision as a rejult [

An alternative solution that is worth exploring is to amend the language to allow initializers
with variable declarations. Instead of merely declaring that a block has a temporary variable named
foo, a block can simultaneously declare the variable and give it an initial value of, say, 0. This
approach does not increase the verbosity of programs but does allow a safe mechanism for a type
inferencer to avoid polluting more variables with tyfpmdefinedObje¢t This approach is used in
a wide variety of languages including €3], Java B(Q], and Ada B3], and we believe it would be a

net improvement to add this feature to Smalltalk.

Soft Types Soft types 6] provide a mechanism to add the benefits of static types to a language
without removing the dynamic character. Users optionally annotate variables with types, and

static tools can use whatever types the user has provided to gain various benefits such as error
checking and improved compilations.

While soft typing is frequently promoted as a mechanism for error checking and improved
compilation, it also has advantages for type inference. The type annotations provide upper bounds
on the types that can be inferred. Any type query on a type-annotated variable can use the annotated
type as an upper bound on the inferred type. As a particularly interesting qasmealtype query

does not need to infer a type ©f but instead can infer a type equal to the annotated type.

Modules Module systems provide a number of techniques that can potentially reduce the number
of feasible data-flow paths. The intuition is that most data- and control- flow ogdtlis modules,

i.e. that there is relatively little flovsetweermodules.

176

To achieve this advantage, the module system must provide some form of restriction on com-
munication between modules. Static types at the module interfaces provide one mechanism for at
least narrowing the communication channels that cross module boundaries. Adding static types to
module interfaces does cause a dynamic language to become more static, but the dynamic character
of the language could still be maintained for work that is within modules.

Another promising mechanism is that of ownership tygE% []. Ownership types provide
statically checkable guarantees about the scope to which objects can flow. For example, ownership
types allow checking the property that an OrderedCollection’s internal array object only flows to
the methods and instance variables of class OrderedCollection—that is, the awvayeidby the
OrderedCollection that uses it. It would appear that ownership types could be just as beneficial for
limiting feasible flow paths for module systems as they are for individual classes.

It is a challenging research project to develop a module system that both maintains the dynamic
character of Smalltalk while obtainingf$igient static restrictions that analyzers can benefit. Never-
theless, this suggestion is included in this chapter, notwithstanding that the rest of the chapter gives
suggestions for straightforward improvements. Given the state of the art today, an suitable module

system appears both feasible and useful.

Deployment-Time Interpreter A limited-strength deployment-time interpreter for Smalltalk would
improve the reliability of results inferred by any static analysis. Static analyzers for Smalltalk must
necessarily assume that extremely reflective features of the language will not be used at deployment
time. If, for example, a program reads a string from the user and then recompiles methods depend-
ing on the contents of that string, then an analyzer has little hope of making a safe prediction about
program behavior.

These reflective features are most frequently used by the development tools, not by applications
themselves. Thus, it should prove useful for many applications to have a limited-strength version
of the interpreter that does not allow those features to be used. Such an environment could even
be built within a standard full-strength development environment. Developers could then test and
deploy their code in the limited version of the language while performing the rest of the program

development with the reflective power of the full language.

177

CHAPTER XiIlI

FUTURE WORK

This research reopens a static analysis problem that was widely suspected to be intractable. By
proving the problem tractable and by providing an approach for solving it, the work opens a variety

of future work.

13.1 Other Languages and Dialects

The current implementation is in the Squeak dialect of Smalltalk. The general approBE&Pof

should work, however, in a variety of Smalltalk dialects and in a variety of higher-order languages.

It would be valuable to implememDP in other Smalltalk dialects, and to adju3bP for other
languages entirely. Even statically typed languages can use the general approach and perhaps have
better data flow information inferred. IntuitivelRDP should be &ective in this wider variety of

contexts, but one cannot be certain until it is tried.

13.2 Exhaustive Analysis

It is sometimes useful to perform axhaustive analysief an entire program, bubDP is not
designed to #iciently do so. DDP does allow for exhaustive analysis, simply by repeating the
analysis on every variable and expression in an entire program, but this approach is probably less
efficient than is possible. Much information would be calculated but then discarded; the subgoals
of each target goal produce useful and true data-flow judgements but those judgements would be
discarded.

For an dficient exhaustive analysis, it is desirable to keep old results and to reuse them in later
gueries. Subgoal pruning adds a complication: distant subgoals of the target goal are more strongly
affected by pruning, and thus have relatively low precision. At the extreme, if a subgoal is distant
enough that it was in fact pruned, then there is no benefit from reusing it. Thus, before a judgement

is reused, it is important to consider how close to the target the goal was.

178

Additionally, it is probably desirable to run multiple queries simultaneously. To choose the
gueries to run, one could start with an individual query and then promote thieginbgoals created
to additional target goals. With this approach,kalt 1 target goals are likely to contribute to each
other and to need similar subgoals. Thus a small increase in the pruning threshold shoutd-dllow

targets to be computed simultaneously without much loss in precision.

13.3 Pruning

The pruning approach implemented thus far is simple. While a simple technique gives a better
validation of the abstract algorithm in general, the overall performance of a concrete algorithm is
affected by the choice of pruning strategy. A good choice of pruning algorithm is a problem in
artificial intelligence, and predictably there is a large area of investigation possible.

One specific idea that could be immediately explored is the following: some dependencies
are stronger than others. For example, if one type judgement is required to have a supertype of
another type judgement’s type, then the two judgements are in a strong dependency—pruning one
judgement would #ectively cause the other to be pruned as well. If one type judgement merely
influences the call graph, which in turn influences another type, then there is a weak dependency
between the types. In the first case, pruning one judgement figittesely prune the other, so
strong is the dependency. In the latter case, however, the dependency is so weak that the pruning
may even have ndkect at all. A better pruning algorithm would consider direct dependencies much
more important than other dependencies. The occasional 4-times penalty desc@ibegier 7s
a simple example of this general refinement.

Another direction to investigate, related to pruning, is the character of the goal pool for typical
problems. For example, such investigation could help find a good threshold size to use for a partic-
ular program. Currently, little is known about the goals and their dependencies, and thus guesses

about the overall algorithmic strategy can only be evaluated by implementing them and trying them.

13.4 Other Analysis Problems

The present work studidgpe inferencen the languag&malltalk The general approach &fDP,

however, appears promising for other problems and for other programming languages. It would be

179

interesting to learn whether the general approaciféstive more widely.

Type inference is an interesting problem for many languages. Prob&li¥is effective in other
dynamic languages such as Self and Scheme, and it would be interesting to verify that it is. Perhaps
DDP is useful in static languages such as Java and ML, though only experimentation can say.

Further, there are other data flow problems that the approach might help with. Other data-flow
analyses, such as alias analy$i§|[and binding-time analysis3p], seem particularly promising.

Finally, the present work has used type inference based on CPA contours. It would be interesting
to systematically analyze which other type inference approaches can be addpide. terobably,
there are combinations that make sense. The current pruning apprdabiahoose between two
extremes for each goal: either a precise CPA-based analysis, or an imprecise conservative analysis.

Likely, other analysis approaches could be used as intermediate pruning levels.

13.5 Applications

Finally, it would be valuable to try other applications of type inference than program understanding.
Compiler transformations and dead code removers would be good applications to try. They would
both be useful and interesting tools in themselves, and they would both give alternative objective
measures of the analysis'fectiveness. These extra object measures would be useful for guiding

further development of the analysis itself.

180

CHAPTER XIV

DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

This chapter describes an extensiorDiDP called DDP/CT. The extension uses the concept of
source-tagged classesr source tagg4o support analysis in the face data polymorphism This
extension has been implemented, but it has not been empirically validated and it has not been proven
correct. Thus, this chapter describes part of the research frontier for the type inference work as
described in this document.

Data polymorphism is, in Agesen’s words, “the ability of a slot (or variable) to hold objects
with multiple object types”3]. Generic “container” or “collection” classes such as lists, tables and
arrays are the standard example of data polymorphism: the one Vector class can be used to create
both a vector of integers and a vector of striigas Agesen pointed out, data polymorphism can
induce significant loss of precision in analyses that perform, or are dependent on, type inference.
A data-flow analysis in this setting will typically merge the types of all the values that flow into
distinct instances of any collection class. From the analyzer’s point of view, if an object flows into
oneinstance of a collection class, it will then flow out eferyinstance of that same collection
class. So, for example, if the program has two completely distinct vectors, one containing integers
and the other containing strings, analysis will show that a single fetch from either of these vectors
could produce either an integer or a string.

To address this problem, one can enrich the analyzer’s type system to partition objects more
finely than by class. Instead of all instances of class Vector being in the same type, those instances
can be subdivided in some fashion into the types (Vetthr, . ., (Vector|l,) for some sequence of
discriminatords ... l,. This partitioning segregates flow paths that go through the class: flow into
any object of type (Vectot;) can only flow out of an object of that same type.

For relatively static languages (such as J&8@)[an dfective partitioning strategy is that of

YIn Hindley-Milner type inferencers, this facility is described by the tgramametric polymorphisril5]. Since the
analysis we are describing concerns an object-oriented language, and since the analysis is an intellectual descendent of
Agesen’s, we hew to the term data polymorphism.

181

Wang and Smith’®CPA algorithm: subdivide objects according to whitkw expression instanti-

ated themT(]. This approach yields a true partition because every object must have been instanti-
ated by exactly oneew expression; objects created by line 134 of the source code mudtéedt

from objects created by line 431.

For extremely dynamic languages such as Smalltalk, however, this approacfiiéstine. The
problem is that, in Smalltalk, object creation is not a primitive syntactic form. It is a single primitive
method, calledbasicNew, that is triggered indirectly by various instance-creation methods around
the progrant. Smalltalk classes are themselves objects, and when a new object is created at run
time, the classes are typically passed through a sequence of regular methods until arriving at the
actualbasicNew invocation. Since there is only one trbasicNew method in the program, this
kind of partitioning is trivial and unhelpful.

This chapter describes a patrtitioning strategy that achievesfiibet @f DCPA'’s strategy in
Smalltalk, even though Smalltalk programs only have a single instantiation point. Note that it is
described in terms of the full Smalltalk language. Because Mini-Smalltalk includes a syntactic
statement instead ofreew method, it does not capture enough of full Smalltalk to support describing

the DDP/CT extensions.
14.1 Extensions
DDP/CT includes a number of individual extensions to the HaB& algorithm:
1. It extends the type system to allow class types to be subdivided smimge tags
2. It adds a new kind of goal, thieverse type goal
3. It adds a seconsblution strategyor answering senders goals that uses inverse type goals.
4. It adds a new kind of goal for finding thgpe of array elements

5. Itaugments flow goalso that they can trace the flow of just those objects within a specified

type.

2For clearer exposition, we are ignoring the existence of a small handful of such methods.

182

Source tags are the core DDP/CT's extensions. They provide a mechanism for subdividing
the set of objects that are instances of one class, thereby providing a way to segregate data-flow
paths through such objects.

The other four extensions are needed to exploit this new subdivision. The new strategy for
senders goals is needed to trace backwards from a class’s instantiation methods to callers that fea-
sibly invoke the methods for a particular partition of the class’s instances; with the stdpio&rd
strategy, all invokers of the initialization methods would be considered feasible, leading to the in-
termixing that subdividing the types was intended to prevent. The new inverse type goals, in turn,
are required to support this new strategy for answering senders goals.

The array-element type goals are added because arrays are widely used data-polymorphic ob-
jects in Smalltalk, not only as data-structures in their own right, but also as the underlying storage
for many other collection classes, such as hash tables. We hope that source-tagged types will fi-
nally provide a way to analyze these uses precisely. Type-specific flow goals have been added as a
simple way to improve the precision of flow goals by avoiding flow paths of objects other than the

interesting ones.
14.1.1 Source-Tagged Classes

Source-tagged classegve a way to approximate the partitioning approach of the prav€rA
algorithm, even though Smalltalk only has dmesicNew method instead of Java's many sepa-
ratenew expressions throughout the program. The approach exploits the common idiom that most
objects are created with a message-send expression whose target is the immutable global variable
that is the primary reference to the class object. Common example¥arecHolder new” and
“Point x: 3 y: 5. Inthisidiom, the constructor methoddw andx:y: in these two examples,
respectively) invokes thieasicNew method on the class to instantiate the class and then invokes a
sequence of methods on the resulting object to initialize that object with the specified parameters.
The partitioning approach ddDP/CT, then, is to attach aource tago all distinct references
to a class in the source. This is a static or abstract analog to the dynamic “taint” attribute used in
Perl for security purposes. Each location in the program text where a class is mentioned has its

own source tag. The abstract semantics associated with the type inference evaluates such a class

183

reference to its tagged value. The tag is preserved as the abstract value flows through the program
during the analysis’ abstract interpretation. When an object is instantiated by sending the primitive
basicNew method to the class object, the tag is transferred to the abstract object thus created.

Source-tagged classes provide tifee of DCPA in this more dynamic setting: two fiierent
occurrences ofValueHolder new” in the source code will cause two distinct abstract values to be
created by the analysis. Hence, when an abstract value later flows into one of these two instances, it
won't erroneously tunnel over to the other one.

A class typdC] in DDP includes all objects that are instances of cldssn DDP/CT, a class
type can also include source tagd and be of the forn{C, I}. The typ€elC, I} includes precisely those
instances o€ that are tagged with source thg

Tagged types are introduced to a running type inference whenever there is a type goal for an
expression that simply reads the primary global variable holding a class. Instead of solving such a

goal with a simple class type as the b&{eP would, DDP/CT solves the goal with a tagged class

type.
14.1.2 Inverse Type Goals

A inverse type goalequests a flow position that includes all program locations that could produce
an object of a specified type. The specified type must be a source-tagged class type. To solve an
inverse type goal for source-tagged ty@el], DDP/CT uses one of two strategies depending on
whetherC is a metaclass or not.

If Cis a regular class and not a metaclass, el includes objects that were created by the
basicNew method. To solve such a go&8IDP/CT simply traces the forward flow (by posting flow
goals) of the return value from ttasicNew method under an assumed context that the receiver is
of typemclasgC), I}. We use clasgC)” to mean the metaclass of claSs Solving this goal will
require finding the precise senders of HasicNew message under these assumptions as described
in the next section.

If Cis a metaclass, the@, I includes the claseclasqC) with tagl, where we useclasqC)

to mean the regular class whose metaclass. ig\side from direct data flow, such an object can

3There are actually a small number of such methods, and the analyzer must trace all of them.

184

only enter the computation from two sources: the program executes the expression Wit thg
program invokes the reflectivelass method on an instance ¢tlasqC),l}. Theclass method
returns the class of the receiver of the message, and it is frequently used in idiomatic Smalltalk. For
example, it is used (indirectly) by theopy method of the Collection class in order to create a new
collection of the same class as the receiver. Therefol@,isf a metaclasdDDP/CT traces flow
forward from two places: the expression with tagnd theclass method under a context where

the receiver type igclasqC), Ij.

Some exceptions should be noted. A fixed set of primitive Smalltalk classes have special syntax
for creating instances of that class; these classes are not typically instantiated by means of sending
new-Style creation messages to the class. Examples are blocks, which have their own syntax, and
numbers, which can appear as literals. An inverse type query on such a class always returns position

14.1.3 Senders Goals

Recall fromChapter Shat asenders goain DDP finds those expressions in the program that can
invoke a specified method in a specified context. The strabdgly uses to find those senders is:

first, find all message-send expressions that invoke a method of the appropriate name, and second,
check that the type of the receiver (which must be inferred using a subgoal) is consistent with the
expression invoking the method.

A potential dificulty of this approach arises if there are a large number of message-send expres-
sions whose message name matches the name of the queried method. For example, when trying to
find the senders of the AtomMorph classisitialize method, the standard strategy would con-
sider hundreds of potential message-send expressions, generate a type query for each one of them,
and, most likely, both generate a large number of subgoals and include a large number of false pos-
itives. Worse, consider querying for the senders of metitaghut : in class Array, perhaps as part
of an dfort to find the type of elements that could be added to a particular set of interesting arrays.

In the standard Squeak code base, there are over one thousand seadetsiof to sort through,
and many of them do, in fact, invoke Arrayds : put: method. Potentially only a small number of

them invokeat:put: on the arraybjectsthat are of true interest, but if the question is formulated

185

as “who invokesat:put: in Array,” then the answer to the question is forced to include a large
number of extra senders in order to be correct.

DDP/CT therefore uses an alternative strategy if the specified context includes a non-trivial
receiver type (i.e., not the top type). If the receiver type of the method is specified, then the
method in that context can only be invoked by a message-send expression where the receiver is in
the specified type. The alternative senders-goal strategy uses this fact. It has as a subgoal an inverse
type goal for the specified receiver type. The answer to this subgoal includes all expressions in
the program that can hold an object of the specified type. The alternative strategy then selects as
possible senders those message-send expressions whose receiver is in the inverse type goal’'s answer
and whose message selector matches the method being queried.

In other words, the alternate strategy swaps the roles of the two selection criteria. Instead of
applying a semantic filter to the results of a base syntactic query, it syntactically filters the results of

a semantic query.
14.1.4 Array-Element Type Goals

Smalltalk arrays are treated as regular objects. There is no special syntax for accessing them. In-
stead, an array is an objexthat handles operatiora“at: i” to retrieve the element at indéxand
“aat: i put: €’ for storing elemenkinto the array at indek Other objects in the system respond
totheat: andat:put: messages, doing non-array operations in response to them, and thus an ex-
pression such aa“ := b at: i” might or might not perform an array operation. In factfelient
executions of this same statement might sometimes invoke an array operation and other times not,
depending on the class of object to whitls bound at each execution.

The type goals oDDP find a type for a variable, but Smalltalk arrays do not hold their contents
in regular Smalltalk variables. Thus, the b&d8P algorithm provides no way to even ask for the
type of an array’s elements. This was satisfactory at the DB was designed, becauB®P pro-
vided no strategy for finding such typd3DP/CT's source tags, on the other hand, do provide the
necessary polyvariance for this analysis, and since arrays are frequently used in Smalltalk programs,
DDP/CT also includes a nearray-element type goal

An array-element type goal finds the type of elements of any array in a specified array type.

186

Ideally, the specified array type includes a source tag. In that case, the arrays whose elements are
being studied are those arrays created with the specified source tag. If the array type does not have a
source tag, then the solution strategy will still be followed, but most likely it will terminate quickly

with a type ofT.

To solve an array-element type goal, the algorithm uses a senders goal to locate all invocations
of at:put: where the receiver might be a member of the goal’s array type. Then, for each such
invocation found, it posts a type goal for the second argument (i.eputhe argument). Finally,
it takes the union of the answers from all of those type goals and reports that union as the type of

elements in the arrays in question.
14.1.5 Type-Specific Flow Goals

Recall that a flow goal asks where values can flow from a specified starting location. They are
used for a number of purposes, including the inverse type queries described above and finding the
program locations where a particular block might be invoked. Some of the enhancements described
above rely heavily on flow goals; manual inspection of early trial®BP/CT suggested that the
enhancements were not deetive as desired due to over-approximation in the flow goals on which
the solution strategies depend.
The biggest problem appeared to be thBtP would trace flow paths that are feasible in princi-
ple but infeasible for the data type of interest. For example, a variable that sometimes holds arrays
that are being traced by an array-element type goal might at other times hold thei/aluEac-
ing flow through this variable would necessarily trace not only the interesting paths through which
the relevant arrays flow, but also the irrelevant paths shatwill follow. If a message is sent to
the variable, then completelyftirent methods might be invoked when the variable holds an array
versus when the variable hold$1; tracing flow through these later methods causes a subgraph of
completely irrelevant program locations to be added to the potential flow from the original variable.
The solution inDDP/CT is to ask a better question. Instead of simply asking about flow from
a specified pointDDP/CT can ask about flow of objects a particular typestarting at a specified
point. Since, in fact, every use of flow goalsDMDP is attempting to find the flow of objects in a

known type, every use of flow goals can take advantage of the new facility to specify the type of

187

| ¢ a other |

c := ValueHolder new.

a :=c.

a contents: ’hello’.
other := ValueHolder new.
other contents: 12345.

other contents.
Cc contents

Figure 14.1: An example Smalltalk fragment that exhibits data polymorphism. In the firstdine,

a, andother are declared as temporary variables. The ValueHolder class is instantiated twice and
the two instances are assignedttandother; a is assigned the same valueasThus,a andc are
aliases for the same object. A string is installed intodjie value holder on the fourth line, while

an integer is installed intother’s value holder on the following lineDDP/CT can distinguish

these two value holders from each other and deduce thatth®ifitents” fetch on the final line

will produce a string, as shown Figure 14.2

(X Inference Derivation allle)

= Type of [{c) contentz] iz { UndefinedDbiject String } @
expression: (o) contents A
context: <Top:
tvpe: | UndefinedObijest String }
B fustification: {3 goalz)
p-all goals referenced: (3 goala) ¥

Figure 14.2: DDP/CT successfully infers that value holders assigned foom Figure 14.1can

only hold strings and the undefined objedil. As an aside, the object can haldl because all
instance variables come into existence holdia@. DDP/CT is not flow sensitive and thus cannot
determine that ValueHolder’s instance variable has been initialized bedatents is ever called.
objects being traced. To continue the previous example, if the analyzer is tracing the flow of arrays,

then it can use a flow goal that only traces arrays. The flow-goal solution strategy is then free to

ignore methods to whichil flows but arrays do not.

14.2 Examples

Figure 14.1shows some example code that is data polymorphic. Class ValueHolder is a standard
Smalltalk class used to hold an arbitrary value—it is a simple “cell” object. The internal value is set
using thecontents: method, and fetched using thentents method. The example code creates
two value holders, storing one of themdrand the other imther. The code copies the reference

in c to a, resulting inc anda being aliases to the same object. The value holderighgiven, via

its aliasa, the string’hello’ to hold, while the value holder iather is given the integet2345

to hold.

188

| ¢ a other vhclassl vhclass2 |

vhclassl := ValueHolder.
c := vhclassl new.

a :=c.

a contents: ’hello’.
vhclass2 := ValueHolder.
other := vhclass2 new.

other contents: 12345.

other contents.
Cc contents

Figure 14.3: A variation of the code ifrigure 14.1 In this code fragment, the class ValueHolder is
stored into a variable before being instantiatBdP/CT successfully distinguishes the two kinds
of value holders—those storeddrand those stored ionther—ijust as it did inFigure 14.1

This code, inisolation, uses ValueHolder in a data-polymorphic fashion: there are other methods
in the standard Squeak image which use the class to contain other data typégursl4. 2hows,
however DDP/CT successfully infers a precise type for the value held. ilt traces data flow back
to the string’hello’ but ignores the infeasible data-flow path to the intedp45.

The next two figures show variations of the code freigure 14.1in order to demonstrate
an extent and a limitation dDDP/CT'’s effectiveness. IrFigure 14.3 the class ValueHolder is
stored into variableshclass1 andvhclass2 before being instantiated. This is an example of
Smalltalk’s reflective ability to manipulate classes as first-class objects themselves. This example
demonstrates more clearly whydlueHolder new” in Smalltalk is not merely a dierent way to
write “new ValueHolder ()" in Java. In this exampleDDP/CT is still able to keep the two value
holders distinct and infer thatholds only strings.

Figure 14.4extends this example further and uses just one varightd,ass, to hold the class.

Both c andother are instantiated by sendimgw to vhclass. DDP/CT is unable to distinguish

the two value holders in this case because it tags both of them with the singular reference to the
originating occurrence of ValueHolder on line 2. Even in this case, howB®/CT is able to
distinguish the two kinds of value holders in this code fragment from value holders created in other
parts of the standard Squeak code base we use for our tests. ODBET infers thatc holds

either a string or an integer, even though there are other value holders in the program that hold other

types.

189

| ¢ a other vhclassl |
vhclassl := ValueHolder.
c := vhclassl new.
a:=c.

a contents: ’hello’.
other := vhclassl new.
other contents: 12345.

other contents.
Cc contents

Figure 14.4: Another variation of the code iRigure 14.1 This time there is only one variable,
vhclassl, used to hold class ValueHolder. In this caB®)P/CT fails to distinguish the two
kinds of value holder created in this fragment; it infers the same typescfarohtents” and
“other contents”. However, it does distinguish these value holders from other value holders in
the program at large, ultimately inferring that both of these holders can hold only strings, integers,
or the undefined object.

| arr arr2 arr3 |
arr := Array new: 10.
arr at: 5 put: ’hello’.

arr2 := arr.
arr3 := arr2.

arr3 at: 5

Figure 14.5: Retrieving elements from an array. Data-polyvariant analysis is required in order for
the analyzer to connect objects removed from an array usingmessages to objects placed into
that array usingit : put: messages.

Data-polymorphic analysis is especially useful when it is applied to resolving separate uses of
collection types. A simple example is shownHkigure 14.5 The code creates an array, adds the
string "hello’ to it, and then retrieves that same string. The analyzer succeeds in this case, as
shown inFigure 14.6 The analyzer uses source tags to connechthemessage-send on the last
line of the example to thet:put: message-send on the third line of the example, while ignoring
the other 1706 senders af :put : in the same code base.

A more useful and sophisticated example is showFigure 14.7 In this example, we create two
numeric vectors, then compute their dot product. dbeProduct: method, not shown, includes

a number of senders tot:. DDP/CT can connect those senders to the senderstoput: in

Figure 14.7using class tags, and determine that all of the arithmetic operation® tifeoduct :

190

(X Inference Derivation ullls)

= Type of [{arr3) at: 3}] iz { UndefinedObject String } &
expression: {arr3) at (5) =
context: <Top:
tvpe: | UndefinedObijest String }
B fustification: {5 goalz)
p-all goals referenced: (5 goala)

Figure 14.6: The analyzer succeeds on the examplEigure 14.5

| pl p2 |

pl := Array new: 3.
pl at: 1 put: 2.

pl at: 2 put: 3.

pl at: 3 put: 0.

p2 := Array new: 3.
p2 at: 1 put: 3.
p2 at: 2 put: 4.
p2 at: 3 put: 1.

“pl dotProduct: p2

Figure 14.7: Data-polymorphism occurs in numeric array computations.
method uses will be applied to integers. The result producddi/CT is shown inFigure 14.8

14.3 Multi-level Source Tags

Factory design pattern26] present an extra challenge to data-polymorphic analysis. A typical fac-
tory method is shown iigure 14.9 This method provides a useful level of indirection—subclasses
might override this method, andftiérent platforms might replace the method outright. Unfortu-
nately, the very indirection that motivates the design pattern circumvents the strategy of class tags:
all value holders created by timkeHolder method are given the same source tag. Thus, the cen-
tral approach of this paper, as described so far, idflitsent to distinguish separate uses of objects
created by factories.

A sample use of this factory method is showrrigure 14.10 Since the same source tag is used
for the value holders held by botth1 andvh2, data flow through the distinct holders is intermingled
as shown irFigure 14.11

This example points to a solution, however. Notice that, whilevitteandvh2 value holders

are both associated with the single mention of the ValueHolder class in the Platform factory method,

191

() Inference Derivation pullfs)

= Type of [(pl) dotProduct: (p2) | iz { Smalllnteger UndefinedObjec &
expreszion: (pl) dotProduct (p2) &
context: <Top:
type: { Smalllnteger Undefined0bjest LargePozitivelnteger|[Inte;
b~ justification: (5 goals)
B-all goals referenced: (5 goals)

Figure 14.8: The analyzer succeeds on the examplEigure 14.7

Platform>>makeHolder
“ValueHolder new

Figure 14.9: A typical factory methodnakeHolder, for classPlatform. This kind of indirection

is useful to programmers in many circumstances, including the possibility tffietedit platforms

will implement the method to use affirent value-holder class. Unfortunately for the analysis,
however, all callers of this method will receiv&alueHolder with the same source tag: the single
mention ofValueHolder in themakeHolder method.

they access that method through separate mentions of class Platform. If there were a way to tag the
ValueHolder references with the mention of Platform instead of the mention of ValueHolder, then
the two variables’ value holders could be discriminated by the analysis.

This can be accomplished by generalizing source tags into flow positions. A flow position can
include both a pointer to an expression in the program plus a context under which the expression
was evaluated. The context can include a type for the surrounding method’s parameters and for the
current receiver object. The type of the receiver object, in turn, can be another source-tagged class
type, completing a recursion. Thus, generalizing source tags into flow positions allows the system
to apply multiple tags to the same object.

A maximum number of tags—i.e., traversals through the recursive cycle of tags to contexts to
types to tags—must be chosen to keep the data-flow lattices finite. Choosing a maximum tagging
level of 1 yields an analyzer equivalent to one using simple source-tagged class types. A level of

0 gives a system that does not use source tags at all. A level of Hiciexut for the example of

Figure 14.10resulting in the precise type inference showirigure 14.12

14.4 Related Work

As mentioned previously, thBCPA algorithm by Wang and Smith partitions objects by which

new Statement allocates therid(]. A type-inference algorithm crafted by Oxhgj, Palsberg, and

192

| vhl vh2 |
vhl := Platform makeHolder.
vhl contents: ’hello’.

vh2 := Platform makeHolder.
vh2 contents: 123.

vhl contents.

Figure 14.10: An example usage of the factory method fréfigure 14.9 In this example, the
inferencer as described so far fails to distinguish separate container objects, because both holders

are given the same source tag.

(%) Inference Derivation ullls)

w Type of [{vhl) contents | iz { UndefinedObject Sm &
expression: (vhi) contents A
context: <Top:
type: { Undefined0tiject Smalllnteger String }

b justification: (3 goals)
p-all goals referenced: (3 goals)

CIR | L

Figure 14.11: The analyzer merges flow through the twéelient holders irFrigure 14.10and so
reports thavh1 can hold both integers and strings.

Schwartzbach also partitions objects by allocation &ifig [

A large number of alias-analysis algorithms partition allocated objects using “allocation sites”
[37]. An allocation site is typically an invocation akw ormalloc() as inDCPA.

Plevyak and Chien describe an adaptive algorithm that often avoids using instantiation-point
tags when they would not be able to refine the analygdk [This approach speeds up the algorithm
with no loss in precisionDDP/CT is less sophisticated and uses source-tags generously even when
they are not needed. This potentially superfluous analysis is mitigated, however, by the ability of
algorithms in theDDP family to focus dfort on a relatively small portion of the progra@DP/CT
may not happen to analyze a large number of uses of the same class at all in the sparse elements of
the program it traverses for a given request, independently of whether or not their analyses could

have been merged without loss of precision.

193

() Inference Derivation o]

w Type of [{vhl) contentz | is { UndefinedDbiject String &
expression: (vhil) contents -
cofitext: <Top:r
type: { UndefinedObject String }

B justification: {3 goalz)
p-all goals referenced: {3 goals)

LIE | 2

Figure 14.12: Using multi-level source tags on the example fréigure 14.10it is possible to
distinguish objects that are created via a factory object.

194

CHAPTER XV

CONCLUSIONS

This dissertation supports its thesis with the following work:

e a description of a new type inference algorithm to solve the stated problem

a proof of correctness for this algorithm

an implementation of the algorithm

empirical analysis of the implementation’s performance

a complete application, Chuck, leveraging the implementation

The description shows that the algorithm meets the basic requirements in the thesis: the algo-
rithm is demand-driven, it prunes subgoals, and it producéerdint types depending on calling
context. The description also gives an argument that, intuitively, the algorithm should both scale
and produce usefully precise types.

The proof shows that the algorithm infers correct types.

The implementations of the algorithm and the Chuck tool show that no pragmatic obstacles
have been overlooked by the on-paper descriptions. The algorithm works in full Smalltalk and it
generates the information needed for the main application intended.

The experimental results and the experiences with the Chuck tool both show that the algorithm
finds usefully precise types in larger programs.

In addition to defending its thesis, my research makes the following contributions:

¢ It gives an operational semantics for the essence of Smalltalk. That semantics is thorough:
it includes full closure semantics, nested mutable variables, andpidéwef#rm : method

(sendvar in Mini-Smalltalk).

¢ |t gives complete data flow rules for demand-driven analysis with CPA abstract contours

for Smalltalk, including precise analysis of code usimg#form : and blocks. These rules

195

analyze forward flow in addition to type inference in order to support these features without

being extremely conservative.

It describes a general algorithm—demand-driven with subgoal pruning—that appears promis-
ing for other analysis problems. The general algorithm allows stronger inference rules to be

used without abandoning scalability.
It provides a complete implementation of the specific algoribDP.

It provides an analysis framework for Smalltalk, used by implementation, thatfé-

ciently supports interactive programming.

It provides a program understanding tool, Chuck, that takes advantagelziDthenplemen-

tation, thus bringinddDP’s advantages to practitioners.

It empirically identifies &ective pruning thresholds f@DP, so that future implementors of

DDP have a good initial tuning of the algorithm’s main parameter.

It empirically identifies the most common types that appear in a representative sample of

Smalltalk code.
It empirically quantifies the improvement of subgoal pruning over root-goal prunirigdéy.

This work contributes to three major discussions that are ongoing in the programming language

community.

First, it reopens the problem of context-sensitive type inference in larger programs. The prevail-

ing research on type inference for the last ten years or so has reduced various kinds of sensitivity

in order to achieve scalability. For example, researchers have removed directionality from the data

flow, they have removed the use of precise call graphs, and they have merged goals for multiple

expressions into just one. My work adds a new option that scales while remaining context-sensitive

and while using directional data flow.

Second, my work emphasizes a connection between two existing fields: program analysis and

knowledge-based systems. Demand-driven algorithms, in general, are actually simple knowledge-

based systems where each goal has only one rule available for solving it. This connection between

196

the fields seems likely to be fruitful. The encoding of many analysis algorithms as knowledge-based
systems appears likely to be straightforward. Using a knowledge-based system as the overall archi-
tecture, lets a program analyzer attempt a variety of strong inference rules, without fully committing
to the worst-case cost of those rules. This advantage is not specific to type inference.

Finally, this work continues a long-running discussion in programming language design regard-
ing static and dynamic languages. Sim@BP does infer precise types even in large programs, it
seems that type inference is practical even when a language is not statically type-checked. Thus,
this research defends language designs where one begins with a dynamic language and then adds
type-based features as an option to be applied whenever and wherever a software engineer deems it

most useful. In short, this research enriches the design space between static and dynamic languages.

197

REFERENCES

[1] Asapi, M. andCarbELLr, L., A Theory of ObjectsSpringer-Verlag, 1996.

[2] Acesen, O., “The cartesian product algorithm: Simple and precise type inference of parametric
polymorphism,” inEuropean Conference on Object-Oriented Programming (ECQO#95.

[3] Acesen, O., Concrete Type Inference: Delivering Object-Oriented ApplicatidAsD thesis,
Stanford University, 1995.

[4] Acrawar, G., “Simultaneous demand-driven data-flow and call graph analysislC8M,
pp. 453-462, 1999.

[5] Amo, A. V., Setrr, R, andULiman, J. D, Compilers: principles, technigues, and todBoston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.

[6] Aiken, A. andWimmers, E. L., “Type inclusion constraints and type inference,Piroceedings
of the conference on Functional programming languages and computer architecture (FPCA)
(New York, NY, USA), pp. 31-41, ACM Press, 1993.

[7] Avprich, J.andCuamsers, C., “Ownership domains: Separating aliasing policy from mecha-
nism,” in European Conference on Object-Oriented Programming (ECQQ604.

[8] AmEricaN NatioNaL Sranparps Institute, ANSI NCITS 319-1998: Information Technology
— Programming Languages — Smalltald430 Broadway, New York, NY 10018, USA:
American National Standards Institute, 1998.

[9] Awmrort, T., NieLson, F,, andNieLson, H. R, Type and Fect Systems: Behaviours for Concur-
rency. Imperial College Press, 1999.

[10] Bacon, D. F, Granam, S. L, and Suare, O. J, “Compiler transformations for high-
performance computingACM Computing Surveysol. 26, pp. 345-420, Dec. 1994.

[11] Barnarp, A. J, From types to dataflow: code analysis for an OO languad#D thesis,
Manchester University, 1993.

[12] Borning, A. H. andincaLLs, D. H. H., “A type declaration and inference system for Smalltalk,”
in Proc. of the ACM Symp. on Principles of Programming Languages133-141, 1982.

[13] Bovarati, C., Liskov, B., andSurira, L., “Ownership types for object encapsulation,”Rino-
ceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (POPL)(New York, NY, USA), pp. 213-223, ACM Press, 2003.

[14] Bracha, G. and Grisworp, D., “Strongtalk: Typechecking Smalltalk in a production envi-
ronment,” inACM Conference on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLAL993.

[15] Carberwi, L. andWeaGner, P, “On understanding types, data abstraction, and polymorphism,”
ACM Computing Surveysol. 17, no. 4, pp. 471-522, 1985.

198

[16] CarrwricHT, R. andFacan, M., “Soft typing,” in PLDI, pp. 278-292, 1991.

[17] Cuamsers, C., “The cecil language specification and rationale,” Tech. Rep. TR-93-03-05, De-
partment of Computer Science and Engineering, University of Washington, March 1993.

[18] Conway, M. J, Alice: Easy-to-Learn 3D Scripting for NovicesPhD thesis, University of
Virginia, 1998.

[19] Cousor, P.andCousor, R., “Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints,A@M Symposium on Principles
of Programming Languages (PORINew York, NY, USA), pp. 238-252, ACM Press, 1977.

[20] DeFouw, G., Grovg, D., andCuamsers, C., “Fast interprocedural class analysis,”Rmoceed-
ings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
pp. 222-236, ACM Press, 1998.

[21] Dusg, D. andFeeLey, M., “A demand-driven adaptive type analysis,”ACM SIGPLAN Inter-
national Conference on Functional Programming (ICEPp. 84—97, ACM Press, 2002.

[22] DuesterwALD, E., Gupta, R., andSorra, M. L., “Demand-driven computation of interprocedu-
ral data flow,” inSymposium on Principles of Programming Languages 37—48, 1995.

[23] Emami, M., GHiya, R., andHenbren, L. J,, “Context-sensitive interprocedural points-to analysis
in the presence of function pointers,” BIGPLAN Conference on Programming Language
Design and Implementatiopp. 242—-256, 1994.

[24] Franacan, C.andFeLieisen, M., “A new way of debugging lisp programs,” ifroceedings of
Lisp Users’ Group Meeting (LUGML998.

[25] Franacan, C. and FeLLeisen, M., “Componential set-based analysi&\CM Transactions on
Programming Languages and Systems (TOPL#@) 21, no. 2, pp. 370-416, 1999.

[26] Gamma, E., HeELM, R., Jonnson, R., andVwiissipg, J, Design Patterns: Elements of Reusable
Object-Oriented SoftwaréReading, Massachusetts: Addison-Wesley, 1995.

[27] Garau, F, “Inferencia de tipos concretos en Squeak,” Master’s thesis, Universidad de Buenos
Aires, 2001.

[28] Girarp, J.-Y, Interprétation Fonctionelle eElimination des Coupures de I'Arithmétique
d’Ordre Supérieur PhD thesis, UnivergitParis VII, 1972.

[29] GoLbserG, A. andRogson, D., Smalltalk-80: The Language and Its ImplementatiBeading,
Massachusetts: Addison-Wesley, 1983.

[30] GosLing, J, Joy, B., andSreeLe, G., The Java Language SpecificatioBoston, MA: Addison
Wesley, 1996.

[31] Graver, J. O.and Jounson, R. E, “A type system for Smalltalk,” inACM Symposium on
Principles of Programming Languages (PORINew York, NY, USA), pp. 136-150, ACM
Press, 1990.

[32] Grove, D., Derouw, G., Dean, J, and Cuamsers, C. “Call graph construction in object-
oriented languages,” IACM Conference on Object-Oriented Programming, Systems, Lan-
guage, and Applications (OOPSLAR97.

199

[33] Guzpiar, M. J.andRosg, K. M., Squeak: Open Personal Computing and Multimedigper
Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[34] Hentze, N. andMcALLESTER, D. A., “On the cubic bottleneck in subtyping and flow analysis,”
in Logic in Computer Sciencep. 342-351, 1997.

[35] Heintzg, N. andTarbieu, O., “Demand-driven pointer analysis,” ®IGPLAN Conference on
Programming Language Design and Implementatjmm 24—-34, 2001.

[36] HencLEl, F., “Efficient type inference for higher-order binding-time analysis Fimctional
Programming Languages and Computer Architectiiffecres, J, ed.), pp. 448-472, Berlin:
Springer-Verlag, 1991.

[37] Hinp, M., “Pointer analysis: Haven't we solved this problem yet?,”AGM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE)
(Snowbird, UT), 2001.

[38] InGaLLs, D., KAeHLER, T., MALONEY, J, WALLACE, S, andKay, A., “Back to the future: The story
of Squeak, A practical Smalltalk written in itself,” iIACM Conference on Object-Oriented
Programming, Systems, Language, and Applications (OOP 3194y .

[39] JacannatHAN, S.and WEeeks, S, “A unified treatment of flow analysis in higher-order lan-
guages,” inACM Symposium on Principles of Programming Languages (PORIEw York,
NY, USA), pp. 393-407, ACM Press, 1995.

[40] Jones, N. D. and NieLson, F.,, “Abstract interpretation: A semantics-based tool for program
analysis,"Handbook of logic in computer scienael. 4, pp. 527-636, 1995.

[41] KapLan, M. A. andULLman, J. D, “A scheme for the automatic inference of variable types,”
Journal of the ACMvol. 27, no. 1, pp. 128-145, 1980.

[42] Kay, A. C., “The early history of Smalltalk,” inThe second ACM SIGPLAN conference on
History of programming languagepp. 69-95, ACM Press, 1993.

[43] KernigHAN, B. W. andRitcuig, D. M., The C Programming Languagé°rentice Hall Profes-
sional Technical Reference, 1988.

[44] Knuth, D. E. “An empirical study of FORTRAN programs,” Tech. Rep. RC 3276, IBM Re-
search, 1971.

[45] Koaak, P. M, The Architecture of Symbolic ComputekdcGraw-Hill, 1991.

[46] Leroy, X., “Polymorphic typing of an algorithmic language,” Research report 1778, INRIA,
1992.

[47] Miner, R., “A theory of type polymorphism in programmingJournal of Computer and
System Sciencegol. 17, Dec. 1978.

[48] Miner, R, Torte, M., andHarper, R., The Definition of Standard MLMIT, Aug. 1990.

[49] Nikororouros, C., Expert Systems: Introduction to First and Second Generation and Hybrid
Knowledge Based Systeniew York: Marcel Dekker, Inc., 1997.

[50] Oikarnen, J.andReep, D., “Internet Relay Chat Protocol.” RFC 1459, May 1993.

200

[51] Oxugs, N., PaLsBerG, J, andScawartzeacH, M. 1., “Making type inference practical,” iEuro-
pean Conference on Object-Oriented Programming (ECQ@P)329-349, 1992.

[52] Peerci, B. C, Types and Programming Languagé€zambridge, MA, USA: MIT Press, 2002.

[53] PLevyak, J.andCuien, A. A., “Precise concrete type inference for object-oriented languages,”
in ACM Conference on Object-Oriented Programming, Systems, Language, and Applications
(OOPSLA) pp. 324-340, 1994.

[54] Portier, F., “A framework for type inference with subtyping,” WCM SIGPLAN International
Conference on Functional Programming (ICERNew York, NY, USA), pp. 228-238, ACM
Press, 1998.

[55] Rees, T. W, “Demand interprocedural program analysis using logic databaseabikshop
on Programming with Logic Databases (Book), ILP$. 163-196, 1993.

[56] Rogerts, D., Brant, J, andJonnson, R., “A refactoring tool for Smalltalk, Theory and Prac-
tice of Object Systemsol. 3, no. 4, pp. 253-263, 1997.

[57] Suarr, M. andPnueLr, A., “Two approaches to interprocedural data flow analysis?risgram
Flow Analysis: Theory and ApplicatidMucanick, S. S.andJongs, N. D., eds.), Prentice Hall
Professional Technical Reference, 1981.

[58] SueLpon, M. A. andGirrorp, D. K., “Static dependent types for first class modules kP
'90: Proceedings of the 1990 ACM conference on LISP and functional program(iNegv
York, NY, USA), pp. 20-29, ACM Press, 1990.

[59] Suivers, O., “The semantics of Scheme control-flow analysis,”Proceedings of the First
ACM SIGPLAN and IFIP Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’91)(Hupak, P.andJones, N. D., eds.), SIGPLAN Notices, Vol. 26,

No. 9, (Yale University), pp. 190-198, ACM Press, June 1991.

[60] Swith, R. B. and Ungar, D., “Programming as an experience: The inspiration for self,” in
European Conference on Object-Oriented Programming (ECOQO#95.

[61] Sreenscaarp, B., “Points-to analysis in almost linear time,” Bymposium on Principles of
Programming Languagegp. 32—41, 1996.

[62] Suzuki, N., “Inferring types in Smalltalk,” irACM Symposium on Principles of Programming
Languages (POPL pp. 187-199, 1981.

[63] Tart, S. T.andDurr, R. A., eds. Ada 95 Reference Manual: Language and Standard Libraries
Springer, 1997.

[64] TenensauMm, A. M., Type determination for very high level languagd2hD thesis, Courant
Institute of Mathematical Sciences, 1974.

[65] T, F., “A survey of program slicing techniqueslburnal of programming languagesol. 3,
pp. 121-189, 1995.

[66] Tip, F., Larrra, C., SWEENEY, P. F, andSrreeTeR, D., “Practical experience with an application
extractor for Java,” iACM Conference on Object-Oriented Programming, Systems, Language,
and Applications (OOPSLAjNew York, NY, USA), pp. 292—-305, ACM Press, 1999.

201

[67] T, F.andPaLsBErG, J, “Scalable propagation-based call graph construction algorithh@yi
SIGPLAN Noticesvol. 35, no. 10, pp. 281-293, 2000.

[68] Unaar, D. andSwith, R. B, “Self: The power of simplicity,” inACM Conference on Object-
Oriented Programming, Systems, Language, and Applications (OOP$22V).

[69] von pErR AmE, P, “Applications of concrete-type inference,” Master’s thesis, University of
Aarhus, 2004.

[70] Wang, T.andSwrth, S. F, “Precise constraint-based type inference for Javagture Notes in
Computer Sciengevol. 2072, pp. 99-117, 2001.

[71] Worczko, M., “Semantics of Smalltalk-80,” iEuropean Conference on Object-Oriented Pro-
gramming (ECOOR)(London, UK), pp. 108-120, Springer-Verlag, 1987.

[72] WoLczko, M., Semantics of Object-Oriented LanguagézhD thesis, University of Manch-
ester, 1988.

202

INDEX

A
abstractcontour..................... 14
abstract interpretation................ 10.
ACCOUNES.iii i 100
activation. ... 49
all activations....................... 50
all_ blocks........................... 47
all objects.......................... 50
array-elementtypegoals............ 186

B
bindingmap......................... 63
blk stat............................ 115
block....... ... 41
block ... AT
block specification 46
block statement: 41
blocktype ... 68
bluebook............... L. 22
bound stats......................... 63

C
callchain............................ 14
call-graph construction................ 8.
call-graph extraction.................. 8.
callingcontext....................... 14
... 47
class......... 42
classanalysis 7.
classtype.............coiiiii 68
closure....... ... 41
compiler optimization.................. 9.
concrete type inference................ 7.
configuration 49
constraints. 11
context................ ... 13, 14, 69
contextmenusoonn. 148
context-sensitive 13
CONTOUN . ..o vttt AT
contourid ... 47
contour-selection function............ 14
control-flow analysis................... 8.
cpa split..................... L 109

D
data polymorphism.................. 181

203

data-flowanalysis 7.
dead-coderemoval 9.
demanddriven....................... 12
directional dataflow.................. 16
dynamic_bindings................... 63
E
empty flow position 73
emptytype ... 68
errordetection 9.
exhaustive analysis.............. 12,178
EXPanSIoONo 15
expertsystem....................... 21
F
failcode............. 140
flow position......................... 71
flow select........................ 115
flowpos. ... 74
forward-flow queries 149
G
GlobalsCID..............ccvvvn... . AT
goal 28,80
H
halted............l 49
I
implementers-of 148
inferenceengine..................... 21
inputoutput interface................. 21
inst it 50
inversetypegoal 184
J
judgement..................... 13, 74
justificationrule...................... 99
justificationtree...................... 99
justifiedl 99
K
knowledge base.................. 21,31
knowledge-acquisition module........ 21
knowledge-based system............. 21.

L
lambda expression................... 41.
IS, 77
lookup contour...................... 50
M
mainblock 42
MESSAQE . . vttt ie i 41.
metaclass. ..., 142
method...........o il A1
method specification................. 46
Mini-Smalltalk. 40
N
T G 1 47
1 ERE) S} I 49
non-standard semantics 10.
O
object............. a7
closure. ..., a7
normal.......................... 47
selector L. 49
P
parameter-types context.............. 14.
parametric polymorphism............ 181
polyvariant 13
possible blocks..................... 109
possible selectors................... 109
preservation.................oiiiien.. 3..
primitive method 140
primitive routine 140
programanalysis..................... 3.
program transformation............... 9.
program understanding................ 8..
program verification 3.
PrOgreSS . .ot 3.
Prune..........ccoviiiiiiiinann.. 28,118
PrUNING . ..t 30
R
read var 51
FECEIVEN ..\ 41
relevantset......................... 119

204

responders judgement................ 78.

S
selector. ... 41
selectortype ...l 68
self flow position..................... 71
senders judgement................... 79.
sendersset..............ooi... 79.
senders-of 148
simple flow judgement................ 17
sourcetag......ooviiiiiiiin. 181,183
source-tagged classes 181, 183
static bindings...................... 63
St e 53
subgoal ... 100
subsumed. 73.
Subtype. ... 69
sum flow position 73
SUMTYPE .. 68
T
templates......................L 14
transitive flow judgement.............. 7.8
BYPE . 68
typechecking........................ 20
type determination.................... 7.
typeinference........................ 1.
type judgement...................... 74,
typequeries ..., 149
U
universal flow position................ 73
universaltype...................... 68
useful........ ... 159
Vv
validobject.......................... 50
validprogram........................ 45
validvariable 63
variable ... 62
variable flow position................. 71
w
WHte var.............ccoviiiiinn... 51

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Overview
	Problem Details
	Large Programs
	Sound Upper Bounds
	All Programs Accepted
	Concrete Types
	Higher-order Languages
	Smalltalk
	Context-Sensitive Analysis

	How to Read This Document

	Chapter 2 — Related Work
	Related Problems
	Applications
	Aspects of Existing Algorithms
	Algorithm Frameworks
	Abstract Interpretation
	Constraints
	Demand-Driven Analysis

	Context and Kinds of Judgements
	Program Expansion Before Analysis
	Unification-Based Data Flow
	Stopping Early
	Adaptation After Analysis Begins

	Scalability
	Type Checking
	Knowledge-Based Systems
	Semantics of Smalltalk

	Chapter 3 — Developing A New Algorithm
	Observations
	Approach
	The DDP Algorithm
	An Example Execution
	Properties of the General Algorithm

	Chapter 4 — Mini-Smalltalk
	Overview
	Terminology
	Language Overview
	Syntax
	Concrete Syntax for Methods
	Valid Programs
	Literals
	Method Specifications and Block Specifications
	Functions Over Syntax
	Semantic Structures
	Semantic Functions
	Initial Configuration
	Execution
	Various Semantic Properties

	Chapter 5 — Data-flow Analysis in Mini-Smalltalk
	Variables
	Definition
	Variables found Dynamically
	Variables found Statically
	Lemmas About Variables

	Types
	Dynamic Context
	Flow Positions
	Judgements
	Type Judgements
	Simple Flow Judgements
	Transitive Flow Judgements
	Responders Judgements
	Senders Judgements

	Goals
	Restrictions
	Lattice Properties
	Other Properties

	Chapter 6 — Justification Rules
	Meta-Judgements
	Subgoals: Justification Rules Viewed Backwards
	Overall Justification Approach
	Type Justifications
	Flow Justifications
	Responders Justifications
	Senders Justifications

	Chapter 7 — Subgoal Pruning
	Specific Pruning Algorithms
	Stop Dead
	Limited Relevant Set
	Shrinking Relevant Set

	When to Prune

	Chapter 8 — Correctness of DDP
	Overview
	Lemmas
	Main Theorem
	Transitive Flow Judgements in the Initial Configuration
	Type Judgements in the Initial Configuration
	Responders Judgements
	Senders Judgements
	Type Judgements
	Simple Flow Judgements
	Transitive Flow Judgements

	Chapter 9 — Implementing DDP
	Analyzing Full Smalltalk
	Primitive Methods
	Instance Creation
	Language Operations as Primitive Methods
	Multiple Processes
	Initial State
	Arrays and Other Collections
	Array Literals and sendvar
	Flow of Literals

	Implementation Issues
	Maintaining Tables About Syntax
	Parse Tree Compression
	Supporting External Source Code

	Chapter 10 — Chuck: A Program-Understanding Application
	Overall Interface
	Available Queries
	Browsing Derivations and Trying Harder

	Chapter 11 — Empirical Validation of DDP
	Issues
	Better versus Good
	Performance of Demand-Driven Algorithms
	Performance of Type-Inference Algorithms
	Usefulness
	Performance Criteria for Usefulness

	Alternative Experimental Designs
	Comparison to Competitors
	Comparison to Competitors in Other Languages
	Performance for Smaller Programs
	Performance of Applications
	Summary

	Actual Experimental Design
	The Program Code Tested
	The Trials
	The Machine

	Summary of Results
	Analysis and Conclusions
	Informal Notes
	A Pruning Schedule for Interactive Use

	Chapter 12 — Proposed Language Changes
	Chapter 13 — Future Work
	Other Languages and Dialects
	Exhaustive Analysis
	Pruning
	Other Analysis Problems
	Applications

	Chapter 14 — DDP/CT: Extending DDP with Source-Tagged Classes
	Extensions
	Source-Tagged Classes
	Inverse Type Goals
	Senders Goals
	Array-Element Type Goals
	Type-Specific Flow Goals

	Examples
	Multi-level Source Tags
	Related Work

	Chapter 15 — Conclusions
	References
	Index

