
Demand-Driven Type Inference
with Subgoal Pruning

S. Alexander Spoon
Olin Shivers

Sun, 05 Mar 2006
(revision 1639)

Summary

Highly dynamic languages like Smalltalk do not have much static type information immediately available
before the program runs. Static types can still be inferred by analysis tools, but historically, such analysis is
only effective if context sensitivity is abandoned or if focus is restricted to smaller programs with only tens
of thousands of lines of code.

This paper presents a new type inference algorithm, DDP, that is effective on larger programs with hun-
dreds of thousands of lines of code, and that integrates elegantly with integrated development environments.
The approach of the algorithm borrows from the field of knowledge-based systems: it is a demand-driven
algorithm that sometimes prunes subgoals. The algorithm is formally described, proven correct, and im-
plemented. Experimental results show that the inferred types are usefully precise. A complete program
understanding application, Chuck, has been developed that uses DDP type inferences.

This work contributes the DDP algorithm itself, a semantics of Smalltalk, a new general approach for
analysis algorithms, and experimental analysis of DDP including determination of useful parameter settings.
It also contributes an implementation of DDP, a general analysis framework for Smalltalk, and a complete
end-user application that uses DDP.

iii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem details . 2

1.2.1 Large programs . 2
1.2.2 Sound upper bounds . 2
1.2.3 All programs accepted . 2
1.2.4 Concrete types . 2
1.2.5 Higher-order languages . 3
1.2.6 Smalltalk . 3
1.2.7 Context-sensitive analysis . 3

1.3 How to read this document . 4

2 Related work 5
2.1 Related problems . 5
2.2 Applications . 6
2.3 Aspects of existing algorithms . 6

2.3.1 Algorithm frameworks . 7
2.3.2 Context and kinds of judgements . 8
2.3.3 Program expansion before analysis . 9
2.3.4 Unification-based data flow . 10
2.3.5 Stopping early . 10
2.3.6 Adaptation after analysis begins . 11

2.4 Scalability . 11
2.5 Type checking . 12
2.6 Knowledge-based systems . 13
2.7 Semantics of Smalltalk . 14

3 Developing a new algorithm 17
3.1 Observations . 17
3.2 Approach . 18
3.3 Structure of the DDP algorithm . 18
3.4 An example execution . 20
3.5 Properties of the general algorithm . 28

4 The DDP algorithm 29
4.1 Overview . 29
4.2 The base language analyzed . 29
4.3 DDP goals . 32

4.3.1 Flow queries . 33
4.3.2 Type queries . 34

v

4.3.3 Responders queries . 34
4.3.4 Senders queries . 34

4.4 Context . 34
4.5 Standard solution strategies . 35

4.5.1 Responders queries . 35
4.5.2 Senders queries . 35
4.5.3 Type queries . 36
4.5.4 Flow queries . 36

4.6 Blocks . 37
4.7 The perform methods . 38
4.8 Pruning . 40

4.8.1 Overview . 40
4.8.2 Pruning in batches . 40
4.8.3 Pruning thresholds and the root-proximity heuristic 41
4.8.4 Shrinking the threshold for real-time response . 42
4.8.5 Drop-dead pruning . 42

4.9 Other language features . 42
4.9.1 Primitive methods . 42
4.9.2 Instance creation . 43
4.9.3 Multiple processes . 43
4.9.4 Exceptions . 44
4.9.5 Message sends to super . 44
4.9.6 Initial state . 44
4.9.7 Arrays and other collections . 44
4.9.8 Array literals and sendvar . 45
4.9.9 Flow of literals . 45

4.10 Implementation issues . 45
4.10.1 Maintaining tables about syntax . 45
4.10.2 Parse tree compression . 46
4.10.3 Supporting external source code . 46

5 Mini-Smalltalk 49
5.1 Overview . 49
5.2 Terminology . 50
5.3 Language overview . 50
5.4 Syntax . 50
5.5 Concrete syntax for methods . 52
5.6 Valid programs . 52
5.7 Literals . 53
5.8 Method specifications and block specifications . 53
5.9 Functions over syntax . 54
5.10 Semantic structures . 54
5.11 Semantic functions . 56
5.12 Initial configuration . 57
5.13 Execution . 58
5.14 Various semantic properties . 61

6 Data-flow analysis in Mini-Smalltalk 65
6.1 Preliminaries . 65
6.2 Variables . 65

6.2.1 Definition . 65
6.2.2 Variables found dynamically . 66
6.2.3 Variables found statically . 66
6.2.4 Properties of variables . 66

6.3 Types . 69
6.4 Dynamic context . 70
6.5 Flow positions . 72
6.6 Decomposition into simple data-flow structure . 74
6.7 Judgements . 76

6.7.1 Type judgements . 76
6.7.2 Simple flow judgements . 76
6.7.3 Transitive flow judgements . 77
6.7.4 Responders judgements . 77
6.7.5 Senders judgements . 77

6.8 Goals . 78
6.9 Restrictions . 78
6.10 Proofs that the DDP domains are lattices . 79
6.11 Properties of cpasplit . 89

7 Justification rules 93
7.1 Meta-judgements . 93
7.2 Subgoals: justification rules viewed backwards . 94
7.3 Overall justification approach . 95
7.4 Type justifications . 95
7.5 Flow justifications . 96
7.6 Responders justifications . 100
7.7 Senders justifications . 105

8 Correctness of DDP 109
8.1 Overview . 109
8.2 Lemmas . 109
8.3 Main theorem . 113

8.3.1 Transitive flow judgements in the initial configuration 113
8.3.2 Type judgements in the initial configuration . 113
8.3.3 Responders judgements . 114
8.3.4 Senders judgements . 114
8.3.5 Type judgements . 115
8.3.6 Simple flow judgements . 117
8.3.7 Transitive flow judgements . 119

9 Chuck: Semantic program navigation 121
9.1 Semantic navigation . 121
9.2 Available queries . 121
9.3 Browsing derivations and trying harder . 122

10 Empirical validation of DDP 129
10.1 Issues . 129

10.1.1 Better versus good . 129
10.1.2 Performance of demand-driven algorithms . 130
10.1.3 Performance of type-inference algorithms . 130
10.1.4 Usefulness . 130
10.1.5 Performance criteria for usefulness . 131

10.2 Alternative experimental designs . 132
10.2.1 Comparison to competitors . 132
10.2.2 Comparison to competitors in other languages . 133
10.2.3 Performance for smaller programs . 133
10.2.4 Performance of applications . 133
10.2.5 Summary . 134

10.3 Actual experimental design . 134
10.3.1 The program code tested . 134
10.3.2 The trials . 135
10.3.3 The machine . 135

10.4 Summary of results . 135
10.5 Analysis and conclusions . 140
10.6 Informal notes . 140
10.7 A pruning schedule for interactive use . 141

11 Proposed language changes 145

12 Future work 147
12.1 Other languages and dialects . 147
12.2 Exhaustive analysis . 147
12.3 Pruning . 147
12.4 Other analysis problems . 148
12.5 Applications . 148

13 DDP/CT: Extending DDP with source-tagged classes 149
13.1 Extensions . 150

13.1.1 Source-tagged classes . 151
13.1.2 Inverse type goals . 152
13.1.3 Senders goals . 153
13.1.4 Array-element type goals . 153
13.1.5 Type-specific flow goals . 154

13.2 Example Code Fragments . 154
13.3 Example Goal Graph . 156
13.4 Multi-level source tags . 158
13.5 Related work . 159

14 Conclusions 163

Bibliography 165

Index 170

Chapter 1

Introduction

1.1 Overview

Dynamic programming languages give a tight interface between programs and humans. They do so in part
by removing the need to restart a program whenever the human requests changes to be made. The result is an
interface like Smalltalk [8, 42] or the Lisp Machine [45], interfaces where the human is more like a sculptor
molding clay than an operator submitting punched cards. Such interfaces share a similarity with mature
operating systems, where users may make many changes without rebooting the entire computer. Users of a
dynamic language, similarly, can make many changes without rebooting the entire running program.

These dynamic interfaces must tolerate programs that are less than pristine. In particular, the languages
must have very flexible type systems in order to avoid chicken-and-egg problems whenever a programmer
tries both to change the type of some variable and to update the locations the variable is used. This type-
checking challenge is so great that most dynamic languages include no type checker at all. As a result,
programmers in dynamic languages can make changes more readily, but they have less automatic information
about the programs they have created.

Type checkers, however, give useful type information. Such types can be used for program understanding
[24], for dead code removal [2], and for improved compilation [32, 60]. By giving up a type checker, dynamic
programming environments seem to sacrifice these good static tools.

There is another source of type information, however: program analysis. Specifically, type inference.
Type-inference algorithms can analyze a program and produce correct statements about the types that portions
of a program will have when the program executes, even in environments that do not insist on all programs
type checking.

The type-inference problem is challenging. Such algorithms must successfully process arbitrary pro-
grams, in the full generality that programmers are allowed to use in a dynamic language, in contrast to a type
checker that is allowed to reject sufficiently difficult programs. Such an algorithm must, for many languages,
contend with data flow and control flow depending on each other. Such algorithms can infer better types when
they repeatedly analyze the same expressions under multiple assumed execution contexts, yet history shows
that they must be careful not to analyze under too many contexts or they will require too much memory (and
thus time) to be practical.

This work describes a new type inference algorithm and shows that it is effective. Specifically:

Demand-driven algorithms that prune subgoals can infer types that are correct, that are usefully
precise, and that differ depending on calling context, in Smalltalk programs with hundreds of
thousands of lines of code.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem details

The problem addressed in the present work is to infer types in large Smalltalk programs without giving up on
context sensitivity. This section describes several aspects of the problem.

1.2.1 Large programs

Type inference is an old problem, and there are now effective algorithms for programs of up to tens of
thousands of lines of code, even with all of the other problem constraints described below. Therefore, the
present work focuses on larger programs of at least one hundred thousand lines of code. When we write of
“large programs,” we mean programs with at least one hundred thousand lines.

1.2.2 Sound upper bounds

The correctness requirement of the present work, defined in detail in Chapter 6, is that inferred types must
be sound upper bounds. Consider a type judgement such as, “foo holds an Integer or a Float.” The
correctness requirement is that every value held by the variable foo as the program runs is either an Integer

or a Float. It is acceptable to have extra options, for example if foo actually only holds Integer’s and
never Float’s. It is not acceptable for foo to hold Fraction’s.

Potential uses do not need to be reported. For example, the above judgement is correct even if the code
will function correctly when foo is bound to a Fraction. As a result, a library is allowed to have different
types inferred when it is used by different programs. In short, the present work finds actual uses instead of
potential uses.

1.2.3 All programs accepted

The goal of the present work is to accept all programs. It is a pure program analysis, producing information
about an existing program, as opposed to a program verification, which attempts to verify that the program
matches some specification—in this case, the specification that no type error occurs when the program runs
[57]. Program verification cannot succeed on an arbitrary program. For typical problems, verification cannot
even succeed on all programs that match the specification—otherwise, the algorithm would provide a solution
to the Halting Problem. Verifiers, therefore, must always reject some programs and must typically reject even
some satisfactory programs. The assumption in the present work is that too much code already exists to allow
this kind of rejection. The present work applies to arbitrarily objectionable programs.

The correctness requirement described above, “sound upper bounds,” follows from this choice. Many
other researchers study a stronger correctness requirement, that no type errors occur at run time, but such re-
searchers must allow some programs to be rejected. This stronger property has two parts, progress and preser-
vation [52], of which the present work only guarantees preservation. A type system guarantees progress if,
whenever the types are correct, the program will continue executing. A type system guarantees preservation,
if whenever the program continues executing, the types remain correct. In the present work, type information
is correct so long as the program continues executing, but the program might nonetheless stop executing at
any time.

1.2.4 Concrete types

Types, in the present work, are an abstraction over the concrete behavior of a program, and abstraction has an
inherent tradeoff between brevity and detail. Extremely abstract types concisely describe program behavior
program, but they lose detail. Extremely concrete types provide great detail about the program, but they lose
brevity.

1.2. PROBLEM DETAILS 3

The present work studies relatively concrete types, such as “an Integer or a Float”, instead of relatively
abstract types, such as “a function from (α, β) tuples to α’s”. The precise type system is described in Chap-
ter 6. In general, the strategy is that followed by Agesen [2]. Concrete types are useful for finding control
flow information, which in turn is useful for many other program analyses. Overall, concrete type inference
is a stepping stone to other analyses.

1.2.5 Higher-order languages
Higher-order languages are desirable, but they make analysis more difficult. In particular, higher-order lan-
guages have subroutine calls that semantically are bound at run time. Object-oriented languages dynamically
bind message sends to methods, while functional languages dynamically bind function calls to functions.
Classic data-flow algorithms for first-order languages [5] cannot be used as they are on higher-order lan-
guages, because such algorithms presume that a control-flow graph is easily computable before starting the
analysis proper.

A conservative control-flow graph may still be computed through program analysis. This computation,
however, requires type information in order to be precise. The two problems are thus intertwined: finding
type information requires finding control-flow information, and vice versa.

1.2.6 Smalltalk
It is expected that the present work is applicable to a variety of programming languages. In order to make
progress, however, a specific dynamic programming environment has been studied initially. Smalltalk has
been chosen due to several advantages: it is used for larger programs; it is a small language and thus conve-
nient work with; and it includes the higher-order constructs of message sending and higher order functions.
Additionally, typical Smalltalk code makes exceptionally heavy use of run-time binding. Even the condi-
tional and looping constructs are implemented with higher order functions instead of being in the syntax.
Smalltalk programs thus stress a program analysis to an exceptional degree. An algorithm effective in such
an extremely dynamic language is likely also to be effective in other, less dynamic languages.

Study of type inference in other dynamic languages is left for future work as described in Chapter 12.

1.2.7 Context-sensitive analysis
The present work limits attention to context-sensitive type inferencers with directional data flow (and thus
that are not based on unification—these terms are described in Chapter 2). Such algorithms are widely agreed
to produce more precise information about a program compared to other type inferencers, but they are also
widely rejected for use in large programs due to expected scalability difficulties. It is not necessary to not
reject such algorithms, however, and indeed the present work demonstrates a context-sensitive inferencer that
scales.

Our project deeply studies one context-sensitive inferencer instead of broadly studying a variety of in-
ferencers including context-insensitive ones. Adjusting the existing alternative inference algorithms for
Smalltalk requires substantial effort—it is more difficult than simply adjusting for a different syntax. As
one example, the expressions “Morph new”, “HtmlDocument new”, and “OrderedCollection new” would,
without care, all be merged by the analyzer and given the same (large) type. Smalltalk is simply a very
dynamic language; new is a method in the library instead of syntax. Given the success of unification-based
algorithms in Cecil [20], it is likely that such algorithms can be adjusted to work in Smalltalk. Since it is not
expected that they generate information as precise as context-sensitive algorithms generate, this approach is
not pursued in the present project and thus it is left as an open research area.

The choice of studying context-sensitive analysis with directional data flow has two major benefits. First,
such analyzers have performance characteristics appropriate to the application area of interactive program-
ming tools. While it is likely that unification-based algorithms can be effective in Smalltalk, it is less clear
that they can produce results at the interactive speeds described in Chapter 10 and particularly section 10.7.

4 CHAPTER 1. INTRODUCTION

The second benefit is that the work achieves a wider impact. The analysis approach described in this doc-
ument should also be effective in less dynamic languages such as Java, and thus the present work revitalizes
context-sensitive analysis in general.

1.3 How to read this document
The overall structure of this document is:

1. Informal development.

2. Formal work.

3. Independent chapters exploring one topic each.

The informal development begins with the careful problem statement of this chapter, continues with a
review of the history of type inference in dynamic languages, uses that review to motivate the structure of
DDP, and then describes DDP in detail. This work constitutes Chapter 1 through Chapter 4.

The formal work of Chapter 5 through Chapter 8 first formalizes three things: the language semantics,
the domains of data-flow facts, and the justification rules used to justify inferred facts about a program. The
formal work culminates in a proof that these definitions correspend in the appropriate way: that justified
judgements are correct.

The chapters after the proof of correctness each stand alone. There is a description of Chuck, a program-
understanding tool based on DDP. There is a description of an experiment that measures DDP in practice.
There are a few recommendations for dynamic languages of the future to better support type inference.
Finally, there is discussion of future work in this line of research, including a description of a beginning on
this work, and some concluding remarks.

Different readers will want to focus on different parts of this document. Some suggestions are given
below. If you encounter unfamiliar terms or function names due to skipping chapters, try the index; all
functions and defined terms have an index entry.

If you want to implement a type-inference tool, then you are probably most interested in the workings of
DDP and its performance envelope. You should focus most closely on the informal development of the first
four chapters of the work, and on Chapter 10 to gain some intuition about how to tune the main parameter
of DDP. Chapter 13 has information about a promising direction of development for type inference. If you
are not familiar with Smalltalk, you should also skim Chapter 5 in order to learn the language syntax that is
being used throughout this document.

If you are a program analysis researcher, then you are probably most interested in the differences between
DDP and other program analyses. You should focus on Chapter 2, Chapter 3, and Chapter 13. Additionally,
you may be interested in Chapter 6, which builds on existing work to define refined domains for describing
context-sensitive data-flow facts.

If you are a language designer, then you are most interested in how type inference in dynamic languages
is progressing and on how language design makes analysis more or less effective. You should focus on
Chapter 1 and Chapter 10, as well as skimming Chapter 2, to gain a view of the status of type inference as of
the time of this work. Additionally, you should read Chapter 11 to see recommendations stemming from this
work for the development of future dynamic languages.

Chapter 2

Related work

Type inference in dynamic higher-order languages has been studied for decades. This chapter describes this
related work from several different perspectives.

2.1 Related problems

Several analysis problems are closely related to type inference. Type-inference enthusiasts should be aware,
while reading the literature, that algorithms for a related problem often include many ideas relevant to type
inference. In fact, many algorithms which directly solve the related problem also solve a bona-fide type-
inference problem along the way. This section describes several related problems that have been studied and
should be considered even by those ultimately interested in type inference.

The problem examined in the present work is type inference [2, 12, 27, 72, 20, 66]. This problem also
goes by the names type determination [66], concrete type inference [2], and class analysis [20]. The problem,
from this perspective, is to analyze a program and predict what type of values the variables or expressions of
the program will hold when it runs. The inference, determination, or analysis part means that the program is
assumed to have no type annotations on the variables, implying that the analyzer needs to infer types where
none are explicit. The concrete or class part means that the kind of types being inferred are sets of runtime
values. That is, they are types such as “Integer, Float, or Fraction,” as opposed to abstract types such as,
“an expression that has no side effects”. There is no exact boundary between abstract types and concrete
types, but most would consider both sets of classes and the types inferred in the present research as relatively
concrete.

A related problem is data-flow analysis in general [11, 22, 57]. To infer types, the algorithms typically
find paths through which values flow from one part of the program to another. For example, if they see a
statement x := y in the program, they note that there is a path from y to x. Any types that arrive in y can
flow on to x as the program executes. Conservatively approximating the resulting flow is the problem of data-
flow analysis. Inferring types usually involves an algorithm that is sufficient to perform data-flow analysis in
general, and vice versa.

Finally, control-flow analysis [60] is a related problem. Call-graph construction and call-graph extraction
are examples of control-flow analysis in object-oriented languages. In general, control-flow analysis predicts
the order in which parts of a program will execute. In higher-order languages, where there are late-binding
constructs such as message sending and first class functions, finding precise control flow requires predicting
types as well. To find the control flow for a message send, one must predict the classes to which the receiver
might belong; to find the control flow for a function invocation, one must predict which functions might flow
to the function expression at the call site. In both cases, finding precise control flow requires also finding
concrete types along the way. Similarly, finding precise types in a higher-order language requires predicting
how the late-binding operations will be bound, thus showing that type inference is the same problem as

5

6 CHAPTER 2. RELATED WORK

precise control flow. Do note that less precise control-flow algorithms do not need to find types: they make
conservative estimates of the late-binding operations and thus do not need to find type information. The
fastest algorithms described in the survey by DeFouw, et al., make just such a trade off [20].

2.2 Applications

Type inference is usually studied in order to enable some specific application. All existing type-inference
techniques are useful for all of these applications, though different applications will prefer the use of different
techniques. Some applications prefer a fast type-inference algorithm that finds types quickly enough that they
can be used in interactive tools, while other applications only require that the inferencer be fast enough to find
the types overnight. Some applications need precise types to be useful at all, while others can fruitfully use
types that are not very precise. Some applications prefer a type inferencer that can be focused to find types
for one specific portion of a program, while for others the inferencer may as well analyze the entire program.

My motivating application is program understanding [24]. Inferred types can help a programmer who
is trying to understand the internal workings of a particular program. The inferred types are directly useful
themselves, and they also help program-understanding tools such as diagram generators and static debuggers.
Program understanding applications prefer those type-inference algorithms that run relatively quickly, as well
as those that can be focussed on the portion of a large program that the programmer is currently studying.

Another common application is program transformation, including transformations to make a program
run more quickly (compiler optimization) [10], and transformations to remove portions of a program that are
not needed (dead-code removal) [3, 68]. Transformation for speed typically prefers a type inferencer which
can be targeted to a module or less at a time in order to support separate compilation. Removing unused code
requires an inferencer that can efficiently analyze an entire program. Neither kind of transformer has special
speed requirements; it is a useful tool even if it must run overnight instead of running interactively.

Third, there are interactive programming tools that are more effective if they have better type informa-
tion. A refactoring browser [56] can make more fine-grained refactorings if it has better type information.
For example, if a user requests that a particular method be renamed, a refactoring browser must additionally
rename some other same-named methods in parallel; type information can reduce the number of such addi-
tional methods that need to be renamed. The basic name-completion commands of an interactive text editor
need a shorter prefix from the user if type information is available to lower the number of names that are
relevant in a particular context. Such tools prefer a type-inference algorithm that runs at interactive speeds
and that can be targeted at specific parts of the program.

A final application is error detection [64]. Type inference can be used to find potential locations in the
program where, for example, a message-send expression might fail to bind to a method (i.e., a Smalltalk
“does not understand” error). Error detection requires a highly precise type inferencer, but it does not require
that the inferencer be targeted at a portion of a program nor that it run especially quickly.

2.3 Aspects of existing algorithms

This section discusses several aspects of existing type-inference algorithms. For each aspect, the section
describes the history of proposals for that aspect and then gives, from the point of view of the present work,
the state of the art on that aspect.

This approach seems more helpful to the reader than a description of individual projects in detail. Future
algorithms will be built by considering those aspects, not by mimicking individual projects, and thus an
understanding of the individual aspects is important. Nevertheless, extensive reference is made to individual
projects. Readers can, whenever they are interested, assemble these references into a complete picture of
each project from the point of view of the present project.

2.3. ASPECTS OF EXISTING ALGORITHMS 7

2.3.1 Algorithm frameworks

There are three common algorithm frameworks used for type inference: abstract interpretation, constraints,
and demand-driven analysis. This section describes gives an overview of those three approaches.

Abstract interpretation

The abstract interpretation framework treats analysis as an abstraction of execution [19, 40]. That is, whereas
the normal interpreter for a programming language computes with real program values and real variable bind-
ings, an abstract interpreter computes with abstract values—such as types—and abstract variable bindings.

Formally, a regular interpreter might be described with equations like E(e) = v, meaning that evaluating
(E) the expression e yields the value v. An abstract interpreter is described with equations more like Ê(e) = t,
meaning that abstract interpretation (Ê) of the expression e yields something of type t. Such an analysis is
correct if, for every e, E(e) is indeed a value of type Ê(e). In a word, the abstraction should be consistent with
the concrete semantics.

In order to support more analysis problems, often a non-standard semantics is used instead of the usual
language semantics. For example, if one wishes to find feasible call-graph edges, then one might begin by
defining a non-standard semantics E′ such that E′(e) = (v, c) determines not only the value v that is computed
by e, but also the list of call graph edges c that are invoked in the course of computing that value. An analyzer
is then defined using a non-standard abstract semantics (NSAS), and the analyzer is correct if the NSAS
corresponds to the non-standard semantics. Since the correctness of such an abstract interpretation depends
on the choice of non-standard semantics, the non-standard semantics in effect defines the analysis problem.

Shivers used the abstract-interpretation framework to describe an entire family of type-inference algo-
rithms for Scheme [60]. The algorithms within the family are differentiated by the following two parameters:

• Abstract values, or types, are an abstraction of program values.

• Abstract contours, or context, are an abstraction of control and environment context. Context is dis-
cussed further in subsection 2.3.2.

Jagannathan and Weeks later describe a similar framework that includes other algorithm parameters [39].
Sharir and Pnueli also use abstract interpretation in their early description of interprocedural data flow [57].
Garau uses abstract interpretation to implement his Smalltalk type inferencer [27].

Constraints

The constraints framework describes algorithms as generating a number of constraints from the program and
then solving those constraints to find information about the program. Constraints are usually generated by
simple syntax analysis. For example, every statement of the form [[x := y]] might generate a constraint of the
form t x is a supertype of t y, where tx and ty are variables representing a type. A solution to the constraints
is an assignment for all of the analysis variables (tx, ty, . . .) such that all of the constraints are satisfied.

Constraints come in a variety of forms, and each form leads to a different method of solution. Constraints
such as tx v ty, “tx is a subtype of ty,” lead to iterative solutions similar to those used in classic intraprocedu-
ral data flow. Conditional constraints, such as tr : T ⇒ tx v ty, capture data flow in higher-order languages.
In this example, the constraint claims that if tr includes type T , then the constraint tx v ty becomes effec-
tive. Such constraints capture new data-flow paths becoming feasible as control-flow paths become feasible.
Equality constraints, such as tx ≡ ty, lead to the unification-based algorithms discussed further in subsec-
tion 2.3.4.

Implementations take considerable liberty within the general constraints framework. Frequently, con-
straints are not represented explicitly; since constraints are typically closely based on program syntax, the
constraints in many algorithms may as well be inferred as the analyzer progresses instead of in a separate
constraint-generation phase. Additionally, even when constraints are explicit in the implementation, they are

8 CHAPTER 2. RELATED WORK

not always generated until there is reason to believe they will influence the final result. In particular, a highly
context-sensitive algorithm frequently has many conditional constraints that never become effective.

Constraints can be simplified considerably without affecting the solution to those constraints. Some
researchers have obtained substantial speed improvements by performing such simplifications before pro-
ceeding to solve the constraints [54, 25, 6].

A large number of data-flow research projects use the constraints framework, including the work of:
Kaplan and Ullman [41]; Suzuki [64]; Henglein [36]; Oxhøj, Palsberg, and Schwartzbach [51]; Emami [23];
Agesen [2]; Steensgaard [63]; DeFouw, Grove, and Chambers [20]; Flanagan and Felleisen [25]; Tip and
Palsberg [69]; Aiken [6]; Wang and Smith [72]; and von der Ahé [71].

Demand-driven analysis

Demand-driven algorithms are organized around goals. A client posts goals that the algorithm is to solve,
and the algorithm itself may recursively post more goals—subgoals—in order to solve the initial goals. The
goal-subgoal relationship may be cyclical: a goal can be a subgoal of one of its subgoals. When there is a
cyclical subgoal graph, the algorithm typically update goals repeatedly until every goal is consistent with its
subgoals.

Demand-driven algorithms find information “on demand.” Instead of finding information about every
construct in an entire program, they find information that is specifically requested. Several demand-driven
versions of data-flow algorithms have been developed [55, 22, 4, 35, 21].

There are two primary advantages of a demand-driven analysis over an exhaustive analysis. First, a
demand-driven algorithm analyzes a subset of the program for each goal. If only a small number of goals are
needed, and only a limited portion of the program is analyzed while solving each goal, then a demand-driven
algorithm can finish more quickly than an exhaustive algorithm. The exhaustive algorithm must analyze the
entire program (or at least the live portion of it), while a demand-driven algorithm can focus on the parts of
the program relevant to the initial goals. This advantage is particularly important for interactive program-
understanding tools, where users ask the tool for information on whatever code they are currently viewing.

Second, demand-driven algorithms can adaptively trade off between precision of results and speed of
execution. If the algorithm completes quickly, then it can try more ambitious subgoals that would lead to
more precise information about the target goal. Likewise, if the algorithm is taking too long, it can give up
on subgoals and accept lower precision in the target goal. This idea is explored in the next chapter.

The primary disadvantage of a demand-driven analysis is that it only finds information about those con-
structs for which goals have been posted. If a client is in fact interested in information about all constructs
in an entire program, then it must either post an enormous number of goals, or it must run the analysis
many times with different initial goals. Thus a demand-driven analysis is typically slower than an exhaustive
analysis if the client does, in fact, want information about the entire program.

2.3.2 Context and kinds of judgements

Type-inference algorithms typically produce one type judgement for each variable of a program.1 Algo-
rithms differ widely, however, in the judgements they process before producing their final results. When
an algorithm processes multiple judgements for each variable, the algorithm is called context-sensitive or
polyvariant. Other algorithms, at the opposite end of the spectrum, process judgements that each describe
multiple variables. In the middle of the spectrum are algorithms that process exactly one type judgement per
variable. Examples are Kaplan and Ullman’s algorithm [41] and 0-CFA[60].

At one end of the spectrum, context-sensitive algorithms process multiple judgements for each variable of
the program. The judgements for a particular variable are distinguished by their contexts. A context, broadly,
is some assumption about the state of execution. A judgement only applies when its context matches the state

1For clarity of exposition, algorithms are described in terms of assigning types to variables, even though many algorithms assign
types to other syntactic elements such as expressions, functions, classes, or methods. The distinction is irrelevant for the present chapter.

2.3. ASPECTS OF EXISTING ALGORITHMS 9

of execution. When the context does not match, the judgement states nothing and is trivially correct, much
as an implication in logic is vacuously true whenever its assumption is false.

A judgement with a specific context applies only to a small portion of possible execution states. To
produce final judgements with no context, the algorithm must analyze each variable under enough contexts
that all possible execution states are matched by at least one of the contexts. If the algorithm uses restrictive
contexts that only match a small portion of execution states, then the algorithm must analyze each variable
under a large number of contexts; likewise, if the algorithm uses broadly applicable contexts, then it needs
to analyze under fewer contexts per variable. Specific contexts tend to find more specific final information,
but also tend to require more total execution time due to the increased number of judgements that are studied
[32].

One widely studied kind of context is the call chain [57]. A call chain specifies which call statements
are at the top of the call stack. For example, “the immediate caller is statement 3 of method foo,” or, “the
immediate caller is statement 3 of method foo, and its caller is statement 4 of method bar.” The number of
call statements in a chain is typically limited by a constant that is a parameter of the algorithm. For example,
an algorithm might use call chains of length 4. The number of contexts per variable is at worst exponential in
the length of the call chains, with an exponent base that is linear in the size of the program. Two of the many
algorithms that use call chains are k-CFA [60] and Emami’s points-to analysis [23].

Another widely used kind of context is the parameter-types context. A parameter-types context specifies
the types of parameters of the currently executing method. For example, “the first parameter is an Integer

and the second is a Float.” In an object-oriented language, a parameter-types context can also specify the
type of the method receiver, e.g. “the receiver is an Integer and the first parameter is a Float.”

There are subdivisions within the general approach of parameter-types contexts. The Cartesian Products
Algorithm (CPA) uses contexts where each parameter type is a specific class; thus, the contexts for each
method correspond to the cartesian product of the classes in the type of each parameter [2]. To contrast, the
Simple Class Sets (SCS) algorithm chooses one parameter-types context for each combination of types that
appear at some call site in the program [32].

The terms context and calling context are common [57], but other terms have been used as well. Agesen
discusses multiple templates of a method, where the templates differ in what this document calls context
[2]. Shivers’ mathematical formulation of control-flow analysis in Scheme defines context using abstract
contours and contour-selection functions [60].

While the present project uses CPA-style parameter-types contexts, this aspect of type inference is not
settled. One call-graph survey[32] gives empirical results about their effectiveness in Cecil and Java, with
algorithms using a traditional control process (see Chapter 3). However, more empirical research is needed
before it is possible to characterize the different kinds of context under broader circumstances, especially in
light of the new control process described in the present work.

Finally, at the opposite end of the spectrum from context-sensitive algorithms, there are algorithms that
process judgements that each apply to multiple variables. For example, the XTA algorithm makes judgements
of the form, “any variable in method m is of type t” [69]. Tip provides evidence that XTA is effective for
Java programs, but this author knows of no attempt to use this approach in a language without static types.
Perhaps, static types counteract the loss of precision due to mixing multiple variables in the same judgement.
Without static types, the approach may be too imprecise to yield useful results. To date, no empirical evidence
is available to decide.

2.3.3 Program expansion before analysis
Program expansion is an approach, not used in the present work, for gaining context-sensitive analysis without
using context. The approach is to duplicate portions of the program before the main analysis executes. The
duplication increases the size of the program that the main portion of the analyzer processes. When expansion
is used, the analysis as a whole can find context-sensitive information even if the main analysis is not context
sensitive.

Expanding calls is one way to expand programs before analysis [51]. For each method name m and each

10 CHAPTER 2. RELATED WORK

call statement s that invokes a method named m, a new method name ms is computed. All methods named
m are given an exact duplicate for each such ms except that the name has been changed from m to ms. All
message-send statements s that invoke a method named m are rewritten to invoke ms instead of m. This
transformation yields a program that behaves equivalently to the original program. However, each duplicate
of a method m may now be analyzed independently. The analysis becomes context-sensitive. The results are
equivalent to using call-chain contexts with chains of length 1.

Expanding away inheritance is another way to expand object-oriented programs before analysis [31, 51].
Each method is copied to each class that inherits the method. As a result, each method is analyzed multiple
times, once for each possible class of the receiver. The results are equivalent to using parameter-types context,
where the receiver type of a context is a single class and all parameter types of a context are the all-inclusive
type.

Context, in general, is more flexible than expansion and is more convenient to discuss. Notably, at least
some work treats expansion as a formalism and uses an implementation that only duplicates methods on
demand [31]. The present work uses context instead of program expansion.

2.3.4 Unification-based data flow

Some algorithms consider the direction of data flow while others do not. The latter algorithms are said to
use unification, because they proceed by equating (unifying) types with each other. Most of the algorithms
cited in this chapter use directional data flow because it is more precise, but unification-based analysis can be
executed more quickly.

Notable unification-based data-flow algorithms include those of Henglein [36], Steensgaard [63], and
DeFouw et al. [20].

2.3.5 Stopping early

The theoretical framework varies among type inference algorithms. Early algorithms such as Kaplan and
Ullman’s begin with trivially safe judgements such as “variable x has type Anything,” and then they examine
the program to find more precise judgements based on those that have already been made [41]. The resulting
judgements are known to be true by an inductive argument over the number of judgement updates: the initial
judgements are true, and each judgement derived from a true judgement is true. A benefit of such algorithms
is that they may stop at any time and still have correct answers; further processing simply gives more precise
answers.

All later algorithms give up this ability to stop early, in exchange for using an approach that gives more
precise results. They begin with overly precise judgements such as “variable x has type Nothing” and then
examine the program to find places where the judgement is too precise and needs to be weakened. Such
algorithms must continue until they reach a fixed point and have no further weakening to perform; if they
stop early then some of the types may still be too precise. This approach requires a more sophisticated
argument, often based on abstract interpretation. Instead of inducting over judgement updates to show that
the results are correct, one would typically induct over steps of execution: the results are correct in the initial
state, and whenever one steps execution from one state to the next, the results remain correct.

The extra precision of such algorithms comes from avoiding self-sustaining inference loops. For example,
if a program includes statements “x := y” and “y := x”, then any type judged for x can never decrease lower
than that judged for y, and vice versa. If either of them starts as type Anything then that is what they both
will be when the algorithm terminates. To contrast, algorithms that start with Nothing must simply ensure
that whenever the type of x increases, the type of y increases commensurately; x and y must have the same
type, but that type can be very precise.

2.4. SCALABILITY 11

2.3.6 Adaptation after analysis begins
A few algorithms involve some adaptation of approach while the algorithm executes. Among these, most
only adapt the approach after one complete set of judgements has been obtained; reflow analysis [60] is an
example, as is Dubé and Feeley’s algorithm [21].

The algorithm family of DeFouw, Grove, and Chambers [20] deserves special mention. The algorithms in
this family adapt the directionality of data flow while they execute. They begin by using directional data flow,
but after any one judgement has been visited more than a threshold number of times, the algorithm adapts by
starting to use unification-based data flow for that judgement. Such algorithms get most of the speed benefit
of purely undirected data flow, while gaining a significant amount of the benefit of directed data flow.

2.4 Scalability
Several implementations of type inference algorithms have been experimentally tested. This section gives a
summary of the results of those experiments as a way to examine the scalability of existing, implemented
type inferencers.

Since the experiments use different computers, code bases, and techniques of measuring performance, it
is difficult to compare the results directly. Instead, this section will give three pieces of information on each
experiment: the largest program on which the experimenter reported the implementation is effective, the kind
of context sensitivity that the algorithm uses, and whether the algorithm uses directional data flow. The first
piece of information gives an idea of how well the implementation scales, and the second two give an idea of
the precision of the results of the implementation. Both directed data flow and more context sensitivity give
more precise results at the expense of requiring more time.

The reported lines of code deserve some mention. The reported number below is consistently the number
of lines of code processed by the algorithm. Many algorithms based on abstract-interpretation automatically
ignore code that they determine to be dead code. In such cases, the amount of code analyzed might be much
less than the total code in the program. This difference is important if one is considering tools for cases
where the live code is a small fraction of the total code. The purpose of this section, however, is to survey
the performance characteristics of existing type inferencers. For that purpose, it is appropriate to report the
amount of code actually analyzed by the analyzer.

Ole Agesen performed experiments on his Cartesian Products Algorithm (CPA) in 1995 [2]. The largest
example he reports is an application extraction involving the analysis of 4200 lines of live code. This example
required 30 seconds of execution time on a 167 MHz UltraSparc. The analysis is context sensitive using CPA
sensitivity, and it uses directional data flow.

Flanagan and Felleisen implemented a componential data-flow analysis and timed its execution in 1999
[25]. The largest program they analyze has 17,661 lines of code. The analysis is not context-sensitive but
does use directional data flow. On a 167 MHz UltraSparc the analysis required 265 seconds.

Grove et al. implemented a variety of type-inference algorithms2 and reported on their performance in
1997 [32]. Their results are summarized in Table 2.1. The largest dynamically typed3 program they study is
50,000 lines of application code plus 11,000 lines of library code. They test the algorithms on a 167 MHz
UltraSparc with 256 MB of memory. On the 50,000 line program, they find that none of their context sensitive
algorithms complete in the available time and memory. The only context-insensitive type-inference algorithm
they try (the other context-insensitive algorithms do not infer types) is based on 0-CFA [60] and succeeds on
the 50,000 line program in three hours.

Grove et al. conclude from their experiments that context-sensitive algorithms such as k-CFA do not
scale to large programs in dynamic languages such as Cecil [17]:

The analysis times and memory requirements for performing the various interprocedurally
flow-sensitive algorithms on the larger Cecil programs strongly suggest that the algorithms do

2They actually implement call graph recovery algorithms, but most of the algorithms are just as useful for type inference.
3The Java experiments they report are irrelevant to the present work.

12 CHAPTER 2. RELATED WORK

b-CPA SCS 0-CFA 1,0-CFA 1,1-CFA 2,2-CFA 3,3-CFA
richards 4 sec 3 sec 3 sec 4 sec 5 sec 5 sec 4 sec
(0.4 klocs) 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB
deltablue 8 sec 7 sec 5 sec 6 sec 6 sec 8 sec 10 sec
(0.65 klocs) 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB
instr sched 146 sec 83 sec 67 sec 99 sec 109 sec 334 sec 1,795 sec
(2.0 klocs) 14.8 MB 9.6 MB 5.7 MB 9.6 MB 9.6 MB 9.6 MB 21.0 MB
typechecker ∞ ∞ 947 sec 13,254 sec ∞ ∞ ∞
(20.0 klocs) ∞ ∞ 45.1 MB 97.4 MB ∞ ∞ ∞
new-tc ∞ ∞ 1,193 sec 9,942 sec ∞ ∞ ∞
(23.5 klocs) ∞ ∞ 62.1 MB 115.4 MB ∞ ∞ ∞
compiler ∞ ∞ 11,941 sec ∞ ∞ ∞ ∞
(50.0 klocs) ∞ ∞ 202.1 MB ∞ ∞ ∞ ∞

Table 2.1: Each box gives the running time and the amount of heap consumed for one algorithm applied to
one program. Boxes with ∞ represent attempted executions that did not complete in 24 hours on the test
machine.

not scale to realistically sized programs written in a language like Cecil.

DeFouw et al. study a family of type inference algorithms that sometimes use unification-based data
flow [20]. Most of them begin by using directional data flow, changing to non-directional data flow when
analyzing parts of the program that are proving expensive to analyze. They seem to use the same test machine
and code samples as in the Grove et al. survey of call graph recovery algorithms. They again find that purely
directional analyses fail to finish in the available time for the 50,000 line program, nor even for their 20,000
line programs. Some of their hybrid algorithms do complete on the 50,000 line program, though not the
hybrid algorithms that allow any context sensitivity. The fastest hybrid algorithms they tried, which have
some directional data flow but no context sensitivity, finish in 50-100 seconds on the 50,000 line program.

Finally, von der Ahé implemented a type inferencer and dead code remover for Smalltalk in the Resilient
environment4 in 2004 [71], though he did not tune them for speed. His inferencer uses DCPA context sen-
sitivity, which is more context sensitive than Agesen’s CPA. He tested his implementation on a 1.7 GHz
Pentium 4 Mobile CPU. He does not report lines of code analyzed or extracted, but he does report that his
dead code remover succeeded in 12-14 seconds to extract a 237-method program from the 1238 methods it
was embedded in.

In summary, context-insensitive analysis with undirected data flow is known to be effective on 50,000-line
programs and may scale to even larger programs. Likewise, hybrid variants of such algorithms that use some
directed data flow should be slower only by a constant factor [20].

The more precise context-sensitive algorithms, those algorithms that the present work focuses on, are only
known at this time to scale to approximately 30,000 lines of code. Due to the cubic or slower performance
of such algorithms [34], they unlikely to be practical in the near future on much larger programs, even as
CPU speeds and memory sizes increase. Some modification of the existing context-sensitive algorithms is
necessary to achieve scalability.

2.5 Type checking
Two other areas of related work should also be discussed: the problem of type checking itself, and the problem
of finding more precise types in type checked languages.

The problem of type checking is to verify that a program will not commit a type error when it executes,
i.e., that a program will not invoke an operation with arguments whose type is invalid [52]. Type checkers rely
on having a type associated with syntactic elements such as expressions, variable declarations, and function

4http://www.oovm.com

2.6. KNOWLEDGE-BASED SYSTEMS 13

declarations. Type checking has received an extraordinary amount of attention from programming language
researchers [47, 28, 46, 58, 9, 7], including the development of the Strongtalk type checker for Smalltalk
[14]. Almost all type checkers rely on some amount of type inference so that programmers do not need to
write down a type for every expression in a program. At the extreme are type checkers such as SML’s [48]
that include a type inferencer so thorough that the programmer typically needs to write down no types at all.

Type checking is a separate problem from the type-inference problem discussed in this paper. A type
checker may reject a program outright, while the type inferencers studied in the present work must succeed
on any program. Programmers using a type checker typically expect to modify their program in response
to issues identified by a type checker. To contrast, programmers using a type inferencer (or a tool based on
type inference) are seeking to find more information about an existing program, and they will not necessarily
change the program even if the tool points out potential problems.

This difference results from a fundamental difference in the property proved by each tool. A type in-
ferencer must only find types that are correct, that is, large enough to include all values that the associated
syntactic element will hold when the program runs. A type checker must find types that are additionally small
enough that any operation the program applies to the associated syntactic element is appropriate to the type.
Since some programs do have type errors, it is inevitable that a type checker must reject some programs.
A type inferencer, meanwhile, can succeed on any program; at worst it can assign a type of Anything to
everything in the program. In the extreme, if a type inferencer analyzes a program that is certain to commit a
type error when it runs, the inferencer must still be careful to find correct types for the portion of execution
preceding the type error.

Another separate problem is that of improving the types that a type checker finds. For example, given a
variable in Java[30] that has an abstract Java interface type, one might wish to learn more specifically which
concrete classes the variable will actually hold at runtime. In many cases it will not hold every possible class
that matches the interface, and in some it will hold only one class. Examples efforts are those of Tip and
Palsberg in 2000 [69], and Wang and Smith in 2001 [72]. Since such algorithms start with the reasonable
types and call graphs given by the language, they solve an easier problem than the present one.

2.6 Knowledge-based systems

Knowledge-based systems, also called expert systems, provide a general theory for the present area of enquiry.
A knowledge-based system has an architecture with four components: a knowledge-acquisition module, a
knowledge base, an input/output interface, and an inference engine [49]. A demand-driven type-inference
algorithm follows this architecture.

The acquisition module of a knowledge-based system provides the initial information and inference rules
that the system may use. For a type inferencer, the acquisition module includes two parts. First, it includes
information about the particular program being analyzed. Such information is provided through tools such
as parsers and static semantic analyzers. Second, it includes inference rules particular to the type-inference
algorithm. The acquisition-level information and rules used by DDP are described in Chapter 5 and Chapter 7
respectively.

The knowledge base holds the information from the acquisition module as well as information inferred
as the analyzer runs. This information can include control information such as what goals the inferencer is
currently pursuing. For a type inferencer, the knowledge base includes type judgements and other control-
and data-flow judgements that have been inferred about the program. The judgements DDP uses are described
in Chapter 6.

The input/output interface interacts with the user. Most type inferencers use a simple interface that simply
accepts questions from a user and then reports results. In general, however, an input/output interface might
interact with a user as it deduces information and might expend considerable sophistication on the problem of
explaining inferred results. Mr. Spidey is just such a tool with a sophisticated interface [24]. The input/output
interface for DDP is the Chuck program browser described in Chapter 9.

The inference engine repeatedly applies rules of inference to update the knowledge base. Typical type

14 CHAPTER 2. RELATED WORK

inferencers use a simple inference engine that simply applies every available inference rule until there are
no more possible updates to the knowledge base. Adaptive demand-driven algorithms, discussed above, are
an exception: such algorithms have a variety of available strategies and choose among those strategies in
some fashion. The most interesting part of DDP is its adaptive inference engine, described in Chapter 3 and
section 4.8.

2.7 Semantics of Smalltalk
The formal work in this paper is based on a new description of Smalltalk’s semantics that is detailed in
Chapter 5. It is worth reviewing a few existing descriptions and the new one’s relation to them.

The earliest full description of Smalltalk semantics appears in Smalltalk-80: The Language and Its Imple-
mentation, by Goldberg and Robson [29], often referred to as the blue book. In addition to a lengthy informal
description and rationale, the blue book includes a complete interpreter written in the language itself. Most
early semantics of Smalltalk refer to the blue book’s definition of the language.

Unfortunately, the blue book’s description does not give blocks the full semantics of closures. It defines
blocks without temporary variables at all. Later implementations of Smalltalk include full closure semantics
including reentrant blocks and nested mutable variables. However, all semantics that mimic the definition of
Smalltalk in this book must necessarily use a limited definition of blocks.

Nested mutable variables are a ubiquitous feature of modern Smalltalk implementations, and accordingly
they are required by the current ANSI Smalltalk standard [8]. Unfortunately, they add complexity to descrip-
tions of the semantics and non-trivial requirements for correct program analysis. Given these factors, the
need to describe nested mutable variables is the most compelling reason that a new semantics of Smalltalk is
included in the present work.

Wolczko has developed a denotational semantics of Smalltalk [73] as part of a larger project studying
object-oriented semantics in general [74]. His Smalltalk semantics describes a variety of language features
including not only the expected features such as objects, classes, messages and methods, but also primi-
tives (including three important examples) and arrays. Nevertheless, in order to stay true to the blue book’s
semantics, Wolczko begrudgingly omits nested mutable variables from his Smalltalk semantics. His paper
describing Smalltalk semantics includes a number of comments on the lack of nested mutable variables and
other limitations of blocks from the blue-book specification. For example, Wolczko writes:

The absence of temporary variables from blocks was a curious omission in the design of Smalltalk.
Later we shall meet other strange features of blocks. [73]

Wolczko’s Smalltalk semantics consistently avoids a general description of nested temporary variables.
Instead, he suggests treating nested temporary variables as syntactic sugar, a language feature that is unim-
portant semantically and can be interpreted by rewriting all uses into features that do exist in the low-level
semantics. Wolczko describes two techniques for rewriting Smalltalk blocks that access non-local variables:
fixing the values of non-local accesses at the time a block is evaluated into a closure, and replacing mutable
variables by non-mutable variables that hold a reference to a mutable cell of memory. The combination of
these rewrites are sufficient to capture the semantics accurately, albeit indirectly. This rewriting approach is a
good trade off for a project whose purpose is to focus on the specifically object-oriented parts of the language
semantics.

The present work has a different purpose: studying data flow in Smalltalk. Since assignments to temporary
variables are a common and tricky mechanism for data flow, it is imperative to describe nested mutable
variables at some level in the associated theory. The present work elects to describe nested mutable variables
directly at the level of the semantics. This approach requires a somewhat more complex description of
the semantics, but in return, it removes the need to add additional lemmas and mathematical structures at
a higher level to accurately describe data flow through nested temporary variables. Further, it results in
a simpler correctness theorem whose statement is closer to the language semantics. Additionally, some
language features, including arrays and most primitives, have straightforward effects on data flow analysis

2.7. SEMANTICS OF SMALLTALK 15

a, b ::= terms
x variable

| [l0 = ς(x0)b0, . . . , ln = ς(xn)bn] object formation
| a.l field selection or method invocation
| a.l⇔ ς(x)b update of field or method

Table 2.2: Core of Abadi and Cardelli’s theory of objects

(the present work conservatively analyzes flow through arrays), and a new semantics is an opportunity to
remove those features that, for our purposes, provide more of a distraction than an elucidation.5

Abadi and Cardelli, too, have developed a general theory of object-oriented semantics [1]. Their theory
is tuned for discussion of static type systems for object-oriented languages. They discuss a number of static-
type issues such as subclassing versus subtyping, types for class-based versus object-based languages, self
types, universally and existentially quantified types, and covariant typing. As with Wolczko’s semantics,
Abadi and Cardelli’s choices are appropriate for their purpose but cause difficulties for developing the theory
behind a data-flow algorithm. The syntax of Abadi and Cardelli’s core language is given in Table 2.2. Notice
that methods and fields are treated equivalently. The language thereby allows copying of methods from one
object to another, a powerful feature normally reserved in a language for reflective development tools. On
the other hand, higher-level constructs such as classes, inheritance, and blocks (lambda abstractions), are left
out of the core language and left to be treated as syntactic sugar. These choices work well for Abadi and
Cardelli’s expressed purpose of studying object-oriented semantics and the associated static type systems.
However, for the present purpose, the theory is simplified if extremely powerful features like method update
are removed while higher-level features important to analysis are described directly.

5Of course, the implementation must correctly support these features even though the theory ignores them. The details are given in
??.

16 CHAPTER 2. RELATED WORK

Chapter 3

Developing a new algorithm

The problem concerning the present work is to infer types in large programs, particularly as an aid to program-
understanding tools. Given the existing work on the problem, how should one proceed? This chapter develops
a new type inference algorithm to address this problem. The algorithm is not yet described in full. A complete
but informal description is in Chapter 4. A formal description of the analysis rules, the trickiest part of the
algorithm, is developed in Chapter 5 through Chapter 7.

3.1 Observations

Consider a few observations from the existing published work and on the nature of the problem itself. These
observations point the way forward to an algorithm more likely to solve the stated problem.

First, observe that existing context-sensitive algorithms do not scale to larger programs. Even 0-CFA has
difficulty with 50,000-line programs [32]. CPA and the k-CFA’s become impractical at even smaller sizes.
If one wants to analyze programs with hundreds of thousands of lines of code, then one should seek some
fundamental change from the existing published algorithms.

Second, note that within any realistic large program, there are many type inference questions that are easy
to answer. If nothing else, the types of literal expressions are easy to derive. For example, the type of 42
is clearly something like Integer—it does not matter where the 42 is embedded in some large program.
Additionally, realistic programs tend to have many variables where some short investigation can find a type.
For example, if a variable Pi is only assigned one value in the program, and that value is a literal, then the
type of Pi is the type of the literal. If one wants a useful algorithm, then one should seek an algorithm that
can at least find answers to the easy questions.

Likewise, in most realistic large programs, there are type inference questions that are impractical to
answer. Consider the argument of a method named #new :. There are many hundreds of expressions that
send the message #new :, and deciding the type of the argument to the method requires coping with all of
those expressions in some fashion. For at least some #new : methods, this is likely to be impractical in a
sufficiently large program. Therefore, if one wants a scalable algorithm, one should seek an algorithm that
can give up at some point instead of tilting at every windmill indefinitely.

Finally, there are precise type inferences that do not require precise types at every step of the derivation
leading to the final inference. For example, consider an expression like “regex matches: someString”.
To find the type of the expression, the inferencer will find a type for regex and then analyze each method
that, based on that type, might be invoked by the statement. However, it might not matter whether regex
is determined to be precisely the set of regular expression classes, or the ultimately imprecise Anything

type; in either case, the inferencer will find that all matches: methods may be invoked, and thus it will
find the same type for the expression “regex matches: someString”. Because of such scenarios, a type
inference algorithm can give up on subproblems without necessarily losing precision in the final answer. If

17

18 CHAPTER 3. DEVELOPING A NEW ALGORITHM

giving up appears to be necessary, the inferencer should at least attempt to give up on subproblems before
giving up on the main problem posed to the inferencer.

3.2 Approach
The previous observations lead to several ideas for building a scalable and useful algorithm.

One general idea is that the algorithm could spend some resources searching for an answer and then give
a trivially correct answer if none can be found before the allocated resources are exhausted. This general
approach implies that easy questions will be answered well, while difficult questions will be answered poorly
but in reasonable time.

For this approach to be effective, it should be possible to use a different strategy on each questions that
has been posed; otherwise, if any one question is difficult, the algorithm would be forced to give up on the
entire program. A demand-driven algorithm has the necessary property. A demand-driven algorithm answers
each question individually, thus gaining has the flexibility to choose a different strategy for each question.

A natural refinement is to allow the algorithm to give up on individual questions instead of just on the
initial posted goal. This way, the algorithm can give precise types to an additional number of queries: those
queries that have expensive subgoals that do not influence the final result. This refinement is called pruning
subgoals. A goal is pruned by giving it a trivially correct answer, thus ensuring that the goal needs no
subgoals.

In order to support subgoal pruning, the goals of the demand-driven algorithm must be formulated care-
fully. For a goal to be prunable, it must admit some answer that is definitely true, and that answer must be
quickly computable—ideally, in constant time. For example, the goal “what is the type of x?” is prunable,
because one can answer “x is of type Anything.” On the other hand, one cannot prune the goal “summarize
the effects of calling method m, and update all goals to account for those effects”.

This approach could be summarized by framing the problem as a knowledge-based system (KBS) [49]
and then using a non-trivial inference engine. The propositions the KBS processes are data-flow judgements;
the goals of the KBS are the same as the goals of this approach; the inference rules of the KBS are justification
tactics; and the non-trivial inference engine continually chooses for each goal whether that goal should be
pruned or pursued further.

3.3 Structure of the DDP algorithm
The DDP algorithm uses the approach described previously. It is demand-driven, and it prunes subgoals.
This section gives the overall structure of DDP. Later chapters elaborate on several details.

The overall algorithm, summarized in Figure 3.1, is a standard demand-driven algorithm modified to
sometimes prune goals. A goal is a question the algorithm is trying to answer. Every goal being pursued by
the algorithm has a tentative answer to its question. As the algorithm progresses, those answers are repeatedly
adjusted.

The standard part of the algorithm is that there is a set worklist holding a set of goals that need to be up-
dated. The algorithm repeatedly removes a goal from worklist and updates its answer. If the answer actually
changes, then any goals depending on the updated goal are added back to worklist for future consideration—
this way, tentative answers to goals can be updated in light of new information whenever the subgoals they
depend on are given new answers. The algorithm terminates when worklist is empty and thus all relevant
goals are consistent with their subgoals. At that point, all relevant goals have answers that are in fact correct.

The UpdateOneGoal function modifies the current answer of one goal to be consistent with the answers
to the goal’s subgoals. For example, it might change the answer of the goal from “x is an Integer” to “x is
an Integer or a Float”, in order to account for new information in the goal’s subgoals. The function Update
performs this modification, and it returns a boolean indicating whether the goal’s answer needed changing (it
is possible that the update leaves a goal with the same answer as before).

3.3. STRUCTURE OF THE DDP ALGORITHM 19

procedure InferType(var)

rootgoal := typegoal(var)

worklist := { rootgoal }

while worklist , ∅ do

if pruner wants to run

then Prune()

else UpdateOneGoal()

return GoalAnswer(rootgoal)

procedure UpdateOneGoal()

Remove g from worklist

changed := Update(g)

if changed then

deps := GoalsNeeding(g)

worklist := worklist ∪ deps

procedure Prune()

for g ∈ ChoosePrunings() do

prune g

worklist := Relevant(rootgoal)

Figure 3.1: The DDP algorithm.

20 CHAPTER 3. DEVELOPING A NEW ALGORITHM

The precise behavior of Update is given in Chapter 7. Note, though, that if the goal being updated needs
new subgoals that do not already exist, then those goals are created, given a maximally precise answer (e.g.,
the empty type holding no values), and added to worklist. If an update causes a change to the goal’s answer,
then UpdateOneGoal adds all goals that depend on the goal to worklist.

The modification from the standard demand-driven algorithm is that, in some iterations, the algorithm
calls Prune and prunes goals instead of updating a goal. The ChoosePrunings function chooses which
goals should be pruned and is described further below. ChoosePrunings is a heuristic, and there are many
possibilities for its specific behavior; see section 4.8 for some of them. Whatever goals the function chooses
are pruned by being given trivially correct answers, thus ensuring that they require no subgoals. After the
chosen goals are pruned, worklist is reset to hold precisely rootgoal plus all direct and indirect subgoals of
rootgoal.

To increase the effectiveness of pruning, the GoalsNeeding function should not return goals that have be-
come irrelevant due to pruning; otherwise, some pruning would essentially be undone. In order to efficiently
return this limited set, an extra set completed can be maintained. The completed set holds those goals that
have been updated and whose immediate subgoals have not had a change in value. Whenever a goal is up-
dated, it should be added to completed, and whenever a goal is added to worklist, it should be removed
from completed. Thus, as the algorithm progresses, goals that are relevant move back and forth between
completed and worklist, always being in at least one of them. Goals that are irrelevant due to pruning are
removed from both sets. The GoalsNeeding function can then return only goals which are present in either
completed or worklist.

3.4 An example execution
This section traces one execution of DDP, in order to clarify how the general algorithm works. The example
execution analyzes a program that includes the code of Figure 3.2, among a great deal of other code that is
not listed.

The figures showing the progress of the algorithm show the knowledge base of all relevant goals. An
example goal is shown in Figure 3.3. On the left is the question the goal attempts to answer: What is X? On
the right is a tentative answer to that question: the type Bottom, a type designating that X is never assigned a
value. The center box inside the goal is empty. If it instead were marked with a J in the middle, then that goal
would be justified with respect to its immediate subgoals. Since it does not have a J, this goal needs more
work.

The worklist of DDP is not shown explicitly in the diagrams. Instead, the worklist consists of those goals
that are not justified and thus are not marked with a J. To simplify the figures, the ordering of the worklist is
not shown; it is irrelevant for the important aspects of DDP.

The algorithm begins as InferType is called with argument X. The algorithm inserts a type goal for X
into the knowledge base, arriving at Figure 3.3. Notice that whenever a new goal is created, it is given an
initial answer that is extremely precise, e.g., type ⊥, an answer which is almost certainly overly specific. That
answer will be broadened as the algorithm progresses.

Suppose that the algorithm proceeds to call UpdateOneGoal instead of Prune for several iterations. The
first goal it chooses to update must be the one for the type of X. Update in this case will find all statements
that modify X. In this case there are two, and the algorithm creates a subgoal for each one of them. Then,
the algorithm updates the type of X to account for the current answers in the subgoals; since the subgoals are
newly created, they still have answers of Bottom, and thus the type of X is also left as Bottom. The root goal
is marked as justified, arriving at Figure 3.4.

The algorithm must now choose a new goal to update. It can choose either Y or p1. Suppose it chooses Y.
There is only one statement in the program that modifies Y, and it assigns the literal 10 to the variable. Thus,
the type of Y is precisely Integer.1 The algorithm updates the answer to Y’s type goal. Since this type is a
change from the old type, i.e. Bottom, the algorithm also marks as unjustified all goals that depend on this

1For simplicity, this example ignores the fact that in Smalltalk all variable bindings hold nil when they come into existence.

3.4. AN EXAMPLE EXECUTION 21

• Class A, method foo:, is:

foo: p1

X ← Y.

X doStuff.

X ← p1.

X doMoreStuff.

ˆX

• Class A, method bar, is:

bar

Y ← 10.

ˆY

• Class A, method baz, is:

baz

| s |

s ← self.

s foo: Y.

ˆs

• Class A, method extraneous, is:

extraneous

Q ← 10.

Q foo: Q.

ˆQ

Figure 3.2: Code for example execution. The relevant methods of some large program are listed; it is assumed
that a great deal of other code is also present in the program. The syntax is Smalltalk; the details are described
in Chapter 5. In agreement with the Smalltalk convention, all uppercase variable names refer to global
variables.

22 CHAPTER 3. DEVELOPING A NEW ALGORITHM

type goal (i.e., it puts those goals back on the worklist). In this case, the only goal depending on Y’s type goal
is the root goal. The execution state arrives at Figure 3.5.

The algorithm might now choose to update the root goal. The same analysis is repeated from the first time
this goal was updated, but now instead of creating new goals for Y and p1, the algorithm can reuse the goals
that already exist. The algorithm updates the answer to the root goal to be “Integer or Bottom,” which,
since Bottom is empty, is the same as simply “Integer”. The root goal is then marked as justified. Since
there are no goals depending on the root goal in this example, there are no other goals to mark as unjustified.
The execution state is summarized in Figure 3.6.

The algorithm might now update the goal for p1. To find the type of p1, which is a parameter, the
algorithm first tries to find all message-send statements that might invoke the parameter’s method, in this
case the #foo : method of class A. A new goal is created to try and find these send statements. Initially, the
goal’s answer is that no send statements in the program can possibly invoke the method, and thus Update
concludes that p1 is never assigned a value. The execution state is now described in Figure 3.7.

Suppose now that the algorithm decides to prune some goals; i.e., it calls Prune instead of UpdateOneGoal.
Prune must choose some goals to prune. Suppose it chooses the newly created senders goal for A’s #foo :
method. The goal is given a trivially correct, extremely conservative answer, and all goals depending on the
goal are marked as unjustified. After the pruning finishes, the algorithm removes from consideration any
goals no longer relevant to the root goal; in this case, however, all goals are still relevant, because the single
goal that was pruned had no subgoals. The execution state is now described in Figure 3.8.

There is only one goal to update, so the algorithm must choose to update the type goal for p1. That goal
must now account for all statements that might invoke A’s #foo : method. Human analysis can show that one
of the two statements actually calls some other #foo : method, but the senders goal was pruned and thus does
not have as precise of an answer as a human can find. The type goal for p1 must then consider type goals
for both Y and Q. A type goal for Y already exists and is reused, while a new goal must be created for Q. The
execution state reaches that described in Figure 3.9.

The algorithm might then update X, causing no change except to mark X’s goal as justified, reaching the
state in Figure 3.10. The algorithm might then update Q (Figure 3.11) and then update p1 again (Figure 3.12).
Since the type of p1 did not change this time, there is no need to unmark any goals as justified. Since no
more goals need justification, the algorithm terminates.

At this point, all goals within the knowledge base are justified with respect to each other. The justification
rules are such that all goals must, in this circumstance, have correct answers. Thus the root goal’s answer is
correct, and a correct type for X is Integer.

3.4. AN EXAMPLE EXECUTION 23

Figure 3.3: Example: The initial state of the knowledge base. There is one question, “What is X?”, and it has
a tentative answer, Bottom.

Figure 3.4: Example: The root goal is updated. It now has two subgoals. Since the root goal’s answer is
consistent with all of the goal’s subgoals, the goal is marked as justified.

Figure 3.5: Example: The type goal for Y is updated. Since the root goal depends on the type goal for Y, the
root goal is no longer justified.

24 CHAPTER 3. DEVELOPING A NEW ALGORITHM

Figure 3.6: Example: The root goal is updated again. It is now consistent with its subgoals, and so it is
marked again as justified.

Figure 3.7: Example: The goal for p1 is updated. Since p1 is a parameter of method A.foo:, the algorithm
must find the senders of A.foo: in order to find the type of p1.

3.4. AN EXAMPLE EXECUTION 25

Figure 3.8: Example: The senders goal is pruned. The goal now has a sufficiently conservative answer that
no subgoals are required.

Figure 3.9: Example: The goal for p1 is updated again. Two new subgoals are required, and the root goal is
no longer justified. Notice that the existing goal for Y is reused.

26 CHAPTER 3. DEVELOPING A NEW ALGORITHM

Figure 3.10: Example: The goal for X is revisited. Its answer needs no change.

Figure 3.11: Example: The type goal for Q is updated.

3.4. AN EXAMPLE EXECUTION 27

Figure 3.12: Example: The goal for p1 is updated again. All goals are now justified, so the algorithm
terminates.

28 CHAPTER 3. DEVELOPING A NEW ALGORITHM

3.5 Properties of the general algorithm
The DDP algorithm has several nice properties. First, the time of execution appears to depend mostly on
the number of goals analyzed and the number of times they are updated. It does not appear to depend much
on the size of the program. Therefore, assuming these intuitions are correct, the algorithm should complete
quickly whenever the number of nodes is restricted, even if the analyzed program is large.

Second, the algorithm finds many short type derivations where possible. One-step derivations, such as
the type of a literal expression, are clearly found by DDP. Additionally, if a short multiple-step derivation
happens to fit within the goals that are not pruned, then the DDP will find that multiple-step derivation as
well. Note that this includes multiple-step derivations for which some of the subsidiary judgements are not
precise. Overall, there are several cases where DDP finds a precise answer to a type query, and when it cannot
find a precise answer, it will give up in reasonable time.

Finally, DDP can be tuned to use more or less effort. By pruning more severely, the algorithm should
finish more quickly. By pruning less severely, the algorithm should finish with better results. Thus, the
severity of pruning provides a knob on the algorithm which trades speed for precision.

Chapter 4

The DDP algorithm

4.1 Overview

This chapter expands on Chapter 3 to give an informal description of the entire DDP algorithm. Some
technical detail is omitted in the interest of readability. Nonetheless, enough information is provided both to
implement DDP in Smalltalk or to form a basis for adapting it to another language. Knowledge of Smalltalk
is not assumed, but a general understanding of object-oriented programming is probably required.

The algorithm is presented as a base algorithm followed by two refinements. The base algorithm analyzes
a core object-oriented language. The two refinements support additional Smalltalk features that are used
widely in practice: blocks and the perform family of methods.

4.2 The base language analyzed

This section describes ST0, the core language analyzed. It is essentially Smalltalk, but it has some simplifi-
cations that fall into two categories. First, some elements of the full language are not described because they
are straightforward to analyze but complicated to describe. Examples are literals in their full generality, the
various forms of singleton variables other than global variables (class variables and pool variables), and the
full list of primitive methods.

The second simplifications are that blocks and the perform methods are not described until later in
this chapter. These features add significant complexity to the analysis. By deferring their discussion, the
description of the core algorithm becomes simpler. Additionally, these features are not available in many
object-oriented languages, and a reader who is contemplating adapting DDP to some other language can
safely focus on those extensions that are present in that language.

The concrete syntax is ALGOL-like, even though the semantics follows Smalltalk, in order to remain
accessible to a wide audience. Smalltalk enthusiasts can hopefully forgive the author for writing in the
vulgar.

For readability, code is bracketed with [[]] delimiters. There is no semantic significance to these brackets.
The language is object-oriented with single inheritance. All values are objects, including primitive values

such integers and textual characters. There is no distinction between “public” and “private” methods and
variables. Instead, all methods are invocable by all objects, and all instance variables are only accessible in
the methods of the class they are defined in.

The syntax is summarized in Figure 4.1. A program consists of global variables, classes, and methods.
Each class has a single superclass (unless the class is the root class Object), a list of instance variables, and a
list of methods. Classes in a valid program must have a superclass hierarchy that is a proper tree rooted at a
class named Object.

29

30 CHAPTER 4. THE DDP ALGORITHM

〈program〉 ::= (〈global〉 | 〈class〉) ∗
〈global〉 ::= “global” 〈identifier〉
〈class〉 ::= “class” 〈identifier〉 [: 〈identifier〉] “{” 〈method〉 ∗ “}”

〈method〉 ::= “method” 〈identifier〉 “[“ “primitive” 〈identifier〉 “]” 〈block〉
〈block〉 ::= “{” 〈identlist〉 〈identlist〉 〈expseq〉 “}”
〈expseq〉 ::= (〈expression〉 “; ”) +

〈expression〉 ::= 〈literal〉
| 〈identifier〉
| “new” 〈identifier〉
| 〈expression〉 “.” 〈identifier〉 〈explist〉
| 〈expression〉 〈symbol〉 〈expression〉
| “return” 〈expression〉
| “(” 〈expression〉 “)”

〈explist〉 ::= “(“ [〈expression〉 (“, ” 〈expression〉)∗] “)”
〈identlist〉 ::= “(“ [〈identifier〉 (“, ” 〈identifier〉)∗] “)”
〈identifier〉 ::= “x”, “y”, “+”, “*”, etc.

〈symbol〉 ::= “+”, “*”, etc.

〈literal〉 ::= “123”, “’hello’”, “5.16”, etc.

Figure 4.1: Syntax of ST0. The extended BNF uses () for grouping, [] for optional items, * to indicate zero
or more repetitions, and + to indicate one or more repetitions.

4.2. THE BASE LANGUAGE ANALYZED 31

Each method has a name, called its selector, an optional primitive tag, and a block that defines the behavior
of the method when it runs. All methods in a class must have distinct selectors. Primitive methods are used to
perform functions outside the core semantics, such as arithmetic and input-output, as well as a few language
features such as blocks and perform. Primitives routines are referenced by an identifier such as “+” or
“print,” and must be defined within the virtual machine.

A block represents behavior in ST0 and its derivatives. It includes a list of formal parameters, a list
of local variables, and a list of expressions that should be executed whenever the block is evaluated. The
formal parameters must be specified whenever the block is evaluated. The local variables are initialized to
the special value nil when the block begins execution, and afterwards the expressions in the block can access
and redefine those local variables arbitrarily. Expressions are as follows:

• [[lit]]. Inject a literal into the computation. This chapter does not give a full syntax for literals, but
typical examples of literals would be the integer 1234 and the string ’hello’.

• [[var]]. Read from a variable that is in scope. ST0 is lexically bound, so v must be a parameter or local
variable of the block the expression is in, an instance variable of the class the expression is in, or a
global variable.

• [[new identifier]]. Instantiate the class named identifier, yielding a new object.

• [[var := exp]]. Evaluate expression exp and assign it to the variable var. The same notes apply regarding
lexical binding, but additionally var may not be a parameter.

• [[exp0.sel(exp1 . . . expm)]], [[exp0 sym exp1]]. Send a message to an object, thus invoking a method.
The first form of the syntax is more general and allows invoking a method of any name and any number
of arguments. It evaluates the expi’s from left to right and then invokes the method named sel in the
object to which exp0 evaluated, specifying the objects from exp1 through expm as actual parameters. If
no method is available named sel, then the program halts. The second syntax has the same semantics
but is limited to binary symbols such as + and *.

• [[return exp]]. Evaluate exp and return the resulting value from the currently executing method.

The most interesting feature of ST0 is its object-oriented message sending. Since message sending adds
considerable complexity to the analysis, it is worth dwelling on its terminology and precise semantics. The
participants of a message send are as follows:

• A message send is a request to invoke a method on some object. Message sends result from evaluating
message-send expressions such as [[3 + 4]].

• A method is a named body of code in some class. For example, if one evaluates [[3 + 4]], then the +

method in class SmallInteger will respond.

• A receiver is an object that is being sent a message. In the expression [[3 + 4]], the receiver is the
number 3.

• A selector is the name of a method. In the expression [[3 + 4]], the selector is the identifier +.

• A message is the combination of a selector with a complete set of arguments. In the expression
[[3 + 4]], the message is “+ 4”.

The semantics of a message-send are as follows. First, the responding method is located by searching the
receiver’s class for a method with the specified selector. If the receiver’s class has no matching method, then
its superclass is searched, followed by its superclass’s superclass, and so on up the inheritance chain until
reaching class Object. If no class in the inheritance chain has a method with the specified selector, then
the message send fails and the program halts. Note that the responding method depends on the class of the

32 CHAPTER 4. THE DDP ALGORITHM

receiver. Message-sends are thus polymorphic: the same expression can invoke a different method each time
it is evaluated during program execution.

Once the responding method has been located, a new environment is created mapping the formal param-
eters of the method to the the actual arguments specified in the message send. The expressions of the method
then execute in the newly created environment. If the method executes a return expression, then the method
ceases executing and the message-send expression itself evaluates to the returned value. If a method’s ex-
pressions all evaluate but no return expression executed, then the program halts; it is illegal to end a method
without returning some value.

If the responding method is a primitive method then the semantics are slightly different. First, the ap-
propriate handler for the named primitive is executed . If the handler succeeds, then the handler chooses the
return value and the regular expressions in the method are ignored. If the handler aborts for any reason, then
the regular expressions of the method execute just as if the method did not have a primitive designation.
The expressions in a primitive method are thus called fail code, because they execute only when the primitive
fails.

A complete set of primitives are not be given in this chapter, but the following primitives will be used in
the course of discussion:

• print. This primitive expects no arguments. The receiver should be a string, and that string will be
printed out to the user. It returns the receiver.

• +. This primitive expects one argument. It adds the receiver to the argument and returns the resulting
value.

An extra primitive will be added with each of the extensions (blocks and perform) described below.
A few technical details are glossed over in this chapter. First, it is assumed that all variables have unique

names. Thus it is meaningful, for example, to discuss “the method of which var is a parameter,” because it
is not allowed to have parameters of different methods with the same name. Implementers must be careful to
use some sort of fully qualified variable names to obtain this uniqueness. Additionally, it is assumed that all
expressions are labeled, so that all references to an expression refer not to the expression in general, but to a
specific occurrence of that expression somewhere in the program. The labels are consistently ignored in the
text of this chapter, but an implementer must be careful to use labeled expressions whenever it is necessary
to distinguish different occurrences of the same expression.

The mathematical work in subsequent chapters is more careful with these technical details.

4.3 DDP goals
Recall that DDP is demand-driven. The algorithm progresses by posing questions to itself and then finding
and improving answers to those questions. DDP uses four kinds of goals, or queries, to construct a goal tree
satisfying an initial root query.

1. A flow query asks where the value of a computation could flow.

2. A type query asks what kinds of values could flow to a given expression.

3. A responders query asks where control could go at a given method invocation.

4. A senders query asks which program points could transfer control to a given method.

The queries of DDP can be described on two axes: backward versus forward flow, and data- versus
control- flow. As Figure 4.2 shows, all four possibilities in the cross product are used by DDPuseful.

Figure 4.2 also shows the dependencies between goals and the subgoals they use to find their answers.
For example:

4.3. DDP GOALS 33

type flow

senders responders

backwards forward

data flow

control flow

Figure 4.2: The four queries Chuck can answer along with their dependencies on each other.

• A flow query for the argument in a message-send expression depends on a responders query in order to
find the methods to which the argument could flow. Thus, there is an arrow in the diagram from flow
queries to responders queries.

• A type query for a message-send expression depends on a responders query in order to find what
methods might respond and thus contribute a type to the message-send expression.

• A responders query depends on a type query in order to determine the type of the receiver of the
message send, which in turn is needed to predict which methods might respond to the message send.

• A senders query depends on type queries in order to filter candidate message-send expressions by the
type of the receiver.

Note that most arrows in the diagram go from a control-flow query to a data-flow query or vice versa. Control-
and data-flow are tightly interwoven in higher-order, dynamic programming languages [59].

4.3.1 Flow queries
A flow query is written f →∗? and asks where the value produced by some variable or expression f will flow
when the program runs.

The answer to a flow query is a flow position. The following flow positions are possible:

• Variables. For example, Display is a flow position designating the values assigned to the Display

global variable during program execution.

• Expressions. Any expression is a flow position designating the values the expression might produce at
run time.

• Methods. For example, method next of class Random is a flow position designating values held by the
receiver (self) of the specified method.

• Sets of the above. Any finite set of simple flow positions is itself a flow position.

34 CHAPTER 4. THE DDP ALGORITHM

These flow positions are additionally discriminated by static contexts as described below in section 4.4.
For efficiency reasons, the value >fp holding all possible flow positions is implemented as a special case

requiring only constant space to represent and constant time to process.

4.3.2 Type queries

A type query asks what kind of values a variable or expression will hold when the program runs. The answer
to a type query is a type. In the base algorithm there are only two kinds of types processed by DDP:

• Individual classes. For example, PlayingCardDeck is a valid type which includes all instances of
class PlayingCardDeck.

• Sets of the above. A set of simple types is also a type. The answer to a type query is typically a set and
not an individual program element.

Like flow positions, type queries are additionally discriminated by context as described below.
For efficiency reasons, the top type > holding all possible objects is implemented as a special case,

requiring only constant space to represent and constant time to process.

4.3.3 Responders queries

A responders query, denoted expr ? b
send−−−→ ?, asks what methods might respond when a particular message-

send expression executes. Unlike the stock Smalltalk program browser, a DDP responders query can use type
queries to gain a more precise answer. DDP does not have to answer a responders query with every method
that has the same name that expr specifies, but can instead answer the subset that is consistent with inferred
type information.

4.3.4 Senders queries

A senders query, denoted meth
send←−−− ?, asks what expressions might invoke a specified method. As with

responders queries, DDP can use type information to provide more precise information than is provided by
the standard Smalltalk program browser. Instead of returning all message-send expressions which send the
same selector as a queried method’s name, DDP can return the subset that is consistent with type information.

4.4 Context
As discussed in subsection 2.3.2, DDP uses CPA-style contexts throughout its data-flow judgements. Such
context is in fact interwoven throughout the analysis. Almost every place that a syntactic element appears, it
is adjoined to an abstract context:

• Flow positions are specified not only as a variable, expression, or (in the case of self-of-method posi-
tions) a method, but also with context. For example, one possible flow position would be “variable x

of method foo:, under a context where foo:’s parameter is a SmallInteger.” The presence of con-
text in flow positions means that flow queries can produce more specific responses than they otherwise
could. Instead of simply describing the variables through which a value can flow, they can describe the
types of objects that will be present in the environments (lexical scopes) surrounding those variables.

• Type queries can ask about a variable in context instead of just a variable. For example, a type query
can ask, “what is the type of x under a context where the first parameter of its lexically containing
method is a SmallInteger?”

4.5. STANDARD SOLUTION STRATEGIES 35

• Responders queries use context both for the queries and the responses. The queries can include a
context along with the message-send expression. The responses include not only a set of methods that
can respond to the message send, but also the contexts under which they might respond. As an example,
the query “who responds to x + y, in a context where x is a SmallInteger?” could have as an answer,
“+ in class SmallInteger, where both the receiver and the first argument are SmallInteger’s.”

• Senders queries, likewise, can return a set of expressions that can invoke a method along with the
context where those expressions might invoke the method.

On a technical note, not all contexts can be applied to all variables, expressions, or flow positions—
a context may only specify types for parameters that are in the scope of the associated syntactic item. As a
result, it is sometimes necessary to broaden a context before it can be applied to one of these items. Frequently
when we write that an item should be considered in some context ctx, we really mean that it should be
considered in context ctx′ where ctx′ is a broadening of ctx to be sensible for the relevant item. Context
broadening is discussed in detail in section 6.9.

4.5 Standard solution strategies
This section describes the solution strategies that DDP uses to solve the above kinds of goals. These strategies
follow straightforwardly once the goals and their answers have been formulated.

4.5.1 Responders queries
A responders query is written as follows:

[[rcvr.sel(arg0 . . . argn)]]ctx ? b
send−−−→ ?

This query attempts to find the methods responding when sel is sent to rcvr, along with the context that those
methods blocks respond in.

To answer a responders query, DDP begins by posting type queries for rcvr and for each of the arguments
arg0, . . . , argn. The solution to the type query on rcvr is used to determine which methods and blocks
respond, while the argument types are used to determine the context under which those methods and blocks
will execute.

To find the possible responding contexts, DDP begins by taking the cartesian product of the receiver
type and all of the argument types, just as CPA does. For methods that respond to the message-send, these
cartesian products can be used directly, and the algorithm returns the cartesian product of the responding
methods and each responding context.

For blocks that respond, the contexts cannot be used directly. A further step is required to create the
responding contexts. Each context from the cartesian product of the receiver type argument types is combined
with context associated with each block type in the receiver type. The context from the cartesian product
supplies the types of the block’s own parameters, while the types in the block type’s associated context
supply the type of the receiver and the types of parameters that are lexically visible from within the block.

4.5.2 Senders queries

A senders query, written meth
send←−−− ?, asks what message-send expressions invoke the method meth. The

answer to this question includes a set of tuples of message-send expressions and contexts.
Regular message sends are the most straightforward of the three to find. If methblk is a block instead

of a method, then there are no regular message sends that invoke it. Otherwise, DDP begins by finding all
message-send expressions whose selector matches the method’s selector. For each such expression, it posts
as a subgoal a type query that attempts to find the type of the receiver. If sending the method’s selector to

36 CHAPTER 4. THE DDP ALGORITHM

objects in that type could possibly invoke methblk, then that message-send expression is considered a possible
sender of methblk.

4.5.3 Type queries

A type query is of the form, “to what type of objects does varexp evaluate in context ctx?” To answer this
question, DDP considers six kinds of syntax: literals, references to classes, self, assignment statements,
parameters, and message-send expressions.

If varexp is a literal then the type inferred for varexp is simply the type of the literal. If the literal is a
small integer, then the inferred type is {|SmallInteger|}; if it is a string, the inferred type is {|String|}; and so on.

If varexp is a reference to a class, then the inferred type is the metaclass for that class. For example, if
varexp is Array, then the inferred type is {|mclass(Array)|}, where mclass(Array), often written Array class,
is the class of Array itself.

If varexp is self, a reference to the current receiver, then DDP uses one of two simple strategies. If
ctx specifies a type other than > for the current receiver, then that type is inferred as the type of varexp.
Otherwise, the type inferred for varexp is the union of the receiving method’s class along with all of its direct
and indirect subclasses.

If varexp is a variable that is modified by assignment statements, then DDP posts as subgoals a type query
for each right-hand side that is assigned to varexp. The context used for each type-query subgoal is ctx itself.
The type of varexp is inferred to be the union of the types of the right-hand sides.

If varexp is a parameter, then it is not modified by assignment statements. Instead, it takes on values
by message-send expressions: message sends provide arguments that are bound to the parameters of the
responding method. If varexp has a type specified in ctx, then, as with the similar case for self, DDP
simply uses the type specified by ctx. Otherwise, DDP posts as a subgoal a senders query to determine
what expressions invoke the method or block for which varexp is a parameter. Once those expressions are
located, DDP posts a type query for the actual arguments that correspond to varexp—e.g., if varexp is the
third parameter of its binding method, then the corresponding actual argument would be the third argument
for regular senders and the fourth argument for perform: senders. The type inferred for varexp is then the
union of the types of all of the corresponding actual arguments.

Finally, if varexp is a message-send expression, then DDP needs to find the methods or blocks that
respond to the message send. Thus DDP begins solving the goal, in this case, by posting a responders goal
on varexp. The responders goal returns a number of methods and blocks, each paired with a context. For
each method-context tuple, DDP scans the method to locate the method’s return statements, and issues a type
query for each return expression. The inferred type for varexp is the union of the solutions to all of these type
queries.

4.5.4 Flow queries

A flow query is of the form, “where do values flow, starting from fpos?” DDP solves these queries by reducing
them to one-step flow queries of the form, “where can values flow from fpos, in a single step of execution?”
To answer a normal flow query, DDP begins by posting a one-step flow query for the initial position. For
each new flow position that is part of the one-step flow query’s solution, DDP posts another one-step flow
query. For each flow position in the solutions to these queries, DDP posts yet another query, and so on, until
none of the flow positions flows to a new location. The solution to the original flow query is then the one-step
closure: the union of fpos with the solutions to all of the one-step flow queries.

If fpos is a flow position for a variable, then a one-step flow query on fpos simply returns all expressions
that directly reference the variable. If fpos is a flow position for a method, then the solution is similarly
simple: the one-step flow is inferred to be all self expressions within fpos’s method.

A one-step flow query for an expression exp is more complicated to answer. Its solution must account for
assignment statements, returns from methods, and message-send statements.

4.6. BLOCKS 37

〈expression〉 ::= . . .

| 〈block〉

Figure 4.3: In STb, a block may be used as an expression.

If exp is the right-hand side of an assignment statement, then the one-step flow from exp is the variable
on the left-hand side of the statement with the same context as fpos.

If exp is immediately returned from a method, then the value exp produces at run time will flow out of
the method and into the message-send expression that invoked it. To find the one-step flow in this case, DDP
begins by posting a senders query on the block or method. The one-step flow from fpos is precisely the
answer to this query.

If exp is the receiver term of a message-send expression, then the value produced by exp at run time
will become the receiver (self) of whichever method responds to the message send. To find the one-step
flow in this case, DDP posts as a subgoal a responders goal on exp in order to find any methods that can
respond—blocks that respond are ignored, because there is no equivalent to self expressions for accessing
the currently executing block. The inferred one-step flow for fpos includes each method/context pair that this
responders goal returns.

Finally, if exp is an argument to a message-send, then the value produced by exp at run time will become
a parameter to the responding method. In this case, DDP again posts a responders goal for exp under the
context that is part of original fpos query.

4.6 Blocks
In ST0, blocks only appear as the entire body of a method. STb is an extension of ST0 that allows blocks to
be passed around as first-class values, just like any other objects. In STb, blocks may appear any place that
an expression may appear, as shown in Figure 4.3.

The semantics of blocks are equivalent to the semantics of lambda expressions in functional languages.
Readers unfamiliar with this construct should probably either consult a text on functional languages or skip
the material on blocks in this document.

Evaluating a block yields a closure which holds not only the expressions of the block, but also the set
of variable bindings—the environment—that was in effect in the block’s lexical scope at the time the block
was evaluated. A reference to the environment is stored in the closure in order to support expressions within
the block referencing those variables. Whenever an expression within a closure refers to a variable lexically
outside that block, the interpreter uses the closure’s environment to locate the variable binding that was in
effect when the closure was created.

Converting a block to a closure does not yet evaluate the expressions within the block. To evaluate those
expressions, a further step is needed: the closure must be evaluated using the primitive value family of
methods. There are several value methods available depending on the number of arguments present in the
closure: value0 for a parameterless closure, value1 for a closure with one argument, and so on.1 All of
these methods are tagged with the primitive value.

When a closure is evaluated using the value method, the interpreter creates a new activation, sets the
formal parameters in that activation to the supplied actual arguments, and begins execution with the first
expression in the closure.

If the closure completes execution of all of its expressions, then the value primitive returns the value of
the last expression in the closure as the value of the value method that was invoked. If, however, the closure

1In Smalltalk, these methods are called value, value:, value:value, etc.

38 CHAPTER 4. THE DDP ALGORITHM

evaluates an return expression, then control returns from the surrounding method—a non-local return—and
thus the closure itself never returns a value.

When analyzing STb, DDP includes a new kind of type, the block type. A block type specifies a particular
block from the source code. A block type includes all closure objects which were created by evaluating the
specified block. Block types additionally mention a context which matches the execution state when the block
was turned into a closure. This context can specify the types of any parameters that are in scope of the block.
Later, when the block’s contents are analyzed, the analysis can be improved by using the recorded types of
those parameters. As with flow positions, having a context associated with a block type allows the answer to
a type query to include not only the blocks to which a variable might refer, but also the types of objects in the
environment around that block at the time the block was created.

Set types, naturally, may now include block types in addition to class types.
All four kinds of queries need adjustments to account for blocks. First, responders queries now return a

list of blocks that can respond in addition to the list of methods that can respond. Responding methods that
invoke the value methods are removed from the answer to the responders query. Instead, if closer-eval
primitive methods can respond, then the analyzer examines the type of the receiver to see which block types
are included. Each block type included in the receiver type corresponds to one responder that the analyzer
must include in the answer to the responders query. The block for the responder is simply the block from
the block type, but the context is generated in a more sophisticated way: it is the intersection of the context
from the block type with the context generated (as with responders queries in ST0) by inferred types for the
message-send’s arguments.

Senders queries may now look up the expressions that invoke a specified block; recall that senders queries
for ST0 are always targeted at a top-level method. A different technique is used to find the senders of a block
than to find the senders of a method. To find the senders of a block, DDP traces the flow of that block using
a flow query. At each message-send expression where the object flows to the receiver, the analyzer checks
whether a value method would respond to that message-send if a block were the receiver. If so, then the
message-send is considered a potential sender of the block. The response to the responders query is the set
of all such senders.

Type queries need a few small adjustments. First, the type of a block expression is a block type whose
block is the block of the expression and whose context is copied directly from the query. Finding the type of a
parameter, interestingly, does not need modification, because senders queries function just as well on blocks
as they do on methods. Finally, the type of a message-send expression must account for the possibility that
closures might invoked by the message send. For methods included in the answer to the responders query,
DDP does the same thing as it does in ST0: it finds a type for each returned expression. For each closure
included in the answer, DDP instead finds a type for the last expression in the closure. The result of a type
query on a message-send expression is then the union of both the types returned by responding methods and
the types returned as the last expression of evaluated closures.

Flow queries must account for flow into and out of blocks. A one-step flow query on the last expression
of a block must now include in its answer all message-send expressions that might invoke the block. The
expressions are found in the same way that they are found for flow from a return statement: a senders query
is performed on the block, and the message-send expressions thus found are the answer to the flow query.
When computing flow from a message-send expression, DDP must be careful to consider blocks that respond
to the message send in addition to methods that respond. The arguments to the message send can flow into
block parameters just as they flow into method parameters.

4.7 The perform methods

STbp extends STb to allow message sends where the selector is computed at run time. This facility is used in
Smalltalk in GUI frameworks and in other code where a generic “pluggable” component can invoke a client-
specifiable method on a target object. While blocks can accomplish the same code pattern—and in fact,
DDP’s analysis of perform is similar to that for blocks—perform is popular due to allowing this common

4.7. THE PERFORM METHODS 39

idiom to be significantly more concise.
In STb, blocks became first-class values instead of merely syntax. Analogously, in STbp, selectors are

first-class values. Syntactically, selectors are specified as literals, as shown in ??: a hash mark (#) followed
by an identifier represents a selector.2 Such a selector can be passed to methods tagged with a new primitive
named perform to accomplish a message-send with a computed selector. Typical STbp programs have a
series of methods named perform0, perform1, perform2, etc., in class Object, which are all tagged with
primitive perform but have different numbers of parameters.

When one of these perform methods is invoked, the interpreter looks at the first argument to find the
selector that is to be sent. If the first argument is not a selector object, then computation halts.3 Otherwise,
a new message is created whose selector is the first argument of the original message and whose arguments
are the remaining arguments of the original message. That message is then sent to the receiver object just as
if the message had been sent with a normal message-send expression.

Analyzing STbp requires adding a new form of types and tweaking the inference rules used for several
kinds of queries. The new form of type is a selector type, and is simply a selector itself. For example,
#straight is a type which includes only the selector object named straight.

Responders and senders queries must include in each item they answer a parameter skip count repre-
senting the number of invocations of perform that lie between the queried item and the answered item.
For responders queries on some message-send expression, the parameter skip count is the number of times
perform is invoked before the designated method responds. A skip count of 0 means that the message-send
expression invoked the method directly. A skip count of 1 means that the message-send expression invoked
perform which then invoked the designate method. Larger skip counts are rare in practice but are included
for completeness. A skip count of 2, for example, means that the message send invoked perform, which then
invoked perform again, and which only then invoked the designated method.

The parameter skip count for senders queries is analogous. Non-zero skip counts mean that the queried
method or block is directly called by the associated message-send statement. A skip count of 1 means that
the associated message-send statement invokes perform which in turn invokes the queried method or block.
Likewise for higher counts.

The skip count is used in type and flow queries to match actual parameter with formal parameters. Instead
of the ith actual parameter matching the ith formal parameter, the skip count requires that in general some
of the first parameters might need to be skipped on either end. For a type query on the ith formal parameter
of some method or block, a senders query is performed to find the possible senders of the method; for a
sender with skip count sk, DDP must match the queried parameter to actual argument i + sk instead of actual
argument i. Likewise, for a flow query on an actual argument, DDP must use skip counts to match the actual
arguments to the formal parameters of each possible responding method or block.

As with analyzing blocks, responders and senders queries gain the bulk of the additional complexity from
adding perform to the language. Responders queries must check each possible responder and see if it is
tagged with the perform primitive. If so, then that responder is not included directly. Instead, the analysis
is repeated using each selector type inferred for the first argument of the message send, with the remaining
arguments used as arguments in the repeated analysis. Any results found in the repeated analysis are given a
parameter skip count of 1. If any of those responders are themselves perform primitives, then the analysis
is repeated again, this time yielding responders with a skip count of 2. This iteration is repeated until no
perform methods respond. Note that this iteration must terminate, because every message send has only a
finite number of parameters, and each iteration has one less parameter than the previous.

Senders queries must, in addition to their usual analysis, account for senders via perform. To find these
senders for a method, they create subgoals for each occurrence of the method’s name as a selector literal

2In Smalltalk, symbols are used as selector objects, and thus selectors can be computed using arbitrary string operations. Such usage
is not needed for the common “pluggable” idiom, and DDP ignores such usage in order to keep the analysis tractable. DDP treats
selectors computed using string operations in the same way it treats reflective features such as the abilities to access a variable by name
and to compile a class at run time.

3Or to be pedantic, the primitive fails, the method’s fail code runs, and the fail code universally halts the computation in some form,
e.g. by entering a debugger.

40 CHAPTER 4. THE DDP ALGORITHM

in the program. If there are no such occurrences, then there are no perform senders. Otherwise, for each
message-send expression where the selector flows to the first argument, the analyzer uses a type query to
check whether that message-send expression might invoke a perform: method. If it can, then the message-
send is considered a possible sender of the method, with skip count 1.

To find senders with skip count 2, the analyzer must trace the forward flow of the appropriate perform

selector and find message-send expressions where the selector is the first argument, intersect those with the
message-send expressions where the original method’s selector flows to the second argument, and then use
a type query to check whether the message-send can invoke a perform method. Likewise for larger skip
counts. Skip counts greater than 1 are rare in practice, to the extent that an analyzer writer can even be
excused if they are not supported at all or if they are only supported to a small level such as 2 or 3.

Senders queries on a block must also have an answer that considers senders via perform. To so do, the
analyzer traces the flow of block as normal, but also traces flow of the appropriate value selector. Message-
send expressions where the value selector is the first argument and the block is the receiver are potential
invokers of the block with a parameter skip count of 1. Senders with larger skip counts are accounted for just
as with those for methods: the analyzer traces the flow of the appropriate perform selector (or selectors, for
even higher-level skip counts) itself, and finds those message-send expressions where the perform selector
is the first argument, the value selector the second argument, and the block the receiver.

4.8 Pruning

4.8.1 Overview

As discussed in Chapter 3, the P in DDP is that DDP uses pruning to keep the goal pool from growing
unmanageably large. An individual goal is pruned by giving it a sufficiently conservative result that the goal
no longer needs any subgoals. If the subgoal is no longer needed by the initial goal—either directly as a
subgoal or indirectly by a chain of subgoal relations—then the goal is irrelevant to the initially posted goal.
Goals that become irrelevant in this fashion can be removed from active consideration—specifically, they can
be removed from worklist and from the needs network. Locating irrelevant goals requires a linear-time
traversal of the needs network.

Pruning algorithms are heuristics, and a variety of approaches are possible. This section describes pruning
algorithms usable by DDP. Given the above general description of pruning, it successively narrows the design
space towards the specific family of pruning algorithms implemented in the prototype implementation.

4.8.2 Pruning in batches

DDP balances three kinds of work:

1. Pruning, as described above.

2. Improving approximations to goals that will, when the algorithm terminates, be used to justify of the
root goal’s solution.

3. Improving approximations to goals that will be pruned.

Work in the second category is the core information computation of the algorithm, while work in the last
category is, in hindsight, wasted. Thus, the time allocated for pruning requires some balance. Pruning
frequently means that goals are pruned sooner and work in the last category is reduced. On the other hand,
pruning frequently also reduces the amount of available time for the essential work in the second category.

To balance these three kinds of work, the DDP prototype prunes in batches. Whenever the pruner runs at
all, it scans the entire set of active goals and chooses a number of prunings. Such a pruner is requires linear
time (or more) in the number of active goals. Thus, the prototype is careful to run the pruner when it has done

4.8. PRUNING 41

a number of goal updates (work in the second two categories) proportional to the number of goals at the time
the pruner runs.

This approach balances the work in the first two categories while limiting work in the third category. If
the pruner ran any less frequently, then the algorithm could spend excessive time improving goals that will
be pruned in the very next batch of pruning. If the pruner ran more frequently, then the pruner itself could
dominate the algorithm’s execution time.

An additional advantage of the batch-pruning approach is that the pruner can rely on computations that
require linear time in the number of active goals. A simple example is that it can use a simple graph traversal
to precisely identify goals that are no longer needed by the root. Other examples are given in the next section.

4.8.3 Pruning thresholds and the root-proximity heuristic

Fundamentally, the pruner must choose some goals to keep and others to prune. The prototype’s pruner uses
a heuristic that prefers goals which are closer to the root goal in the dependency graph. Intuitively, a direct
subgoal of the root goal is more likely to influence the goal’s answer than is a subgoal of a subgoal of a
subgoal of a subgoal of the root goal. One would prefer to keep all subgoals, but if some must be pruned,
then prune the subgoal of the sub-sub-sub-subgoal. This is the root-proximity heuristic. It is analogous to
the heuristic in chess-playing programs that focus more attention on board positions one in the future than on
board positions ten moves in the future.

The pruner in the prototype, whenever it runs, chooses to keep a number of goals that are relatively
close to the root goal, while pruning all goals that are further away. It uses a pruning threshold to decide
how many goals to keep. The choice of pruning threshold balances time expended versus quality of results.
Larger thresholds mean that the algorithm tends to require more time but tends to find better answers. The
experiments described in Chapter 10 shed some light on reasonable choices for the pruning threshold.

The algorithm is as follows. First, choose the goals to keep: keep the pruning-threshold goals that are
closest to the root goal. Second, prune all kept goals that depend on any goal not chosen to be kept. Finally,
discard from active consideration all goals which are not needed, directly or indirectly, by the root goal.

As a small modification, the prototype uses a modified definition of “distance from the root goal.” The
pruner still chooses the pruning-threshold goals closest to the root goal, but the definition of closest is mod-
ified. The modified definition gives some subgoal relationships a larger distance than others. Most subgoals
are given a distance of 1, but senders-of and responders-to subgoals are given a larger distance of 4. The
intuition behind this idea is that pruning other kinds of goals tends to give a poor solution not only to the
pruned goal, but to an entire chain of goals closer to the root goal. Pruning a call-graph subgoal is less prone
to ruining the chances for the goal depending on it. This modification appears to help based on informal
trials, but has not been thoroughly tested empirically.

The choice of pruning threshold is an empirical matter discussed in Chapter 10. To summarize the em-
pirical work, a pruning threshold of 50 gives a fast but moderately precise analyzer, while a threshold in the
range of 2000-3000 yields a precise but only moderately fast algorithm. Larger thresholds than 3000 continue
to increase the time required for analysis without giving much improvement in precision.

Note that a pruning threshold is different from a pruning depth. A pruning depth specifies a maximum
distance from the root goal directly. The pruner would select all goals within the distance of the root goal,
regardless of how many goals are selected.

While there is no empirical evidence comparing pruning depths to pruning thresholds, the prototype uses
pruning depths because, intuitively, they seem likely to give more reliable control over the time expended
and the quality of the results. The main source of intuition, here, is that a fixed pruning depth can result in a
large variation in the number of goals explored, depending on the initial query, which surely leads to higher
variation in the time required. A fixed pruning threshold, to contrast, results in a fixed number of goals being
explored at a time by the algorithm.

42 CHAPTER 4. THE DDP ALGORITHM

4.8.4 Shrinking the threshold for real-time response
Looking ahead, the empirical study in Chapter 10 shows that the pruning threshold gives effective control of
the time of execution, but only on average. A fixed threshold yields a high variance in the required time.

The pruning threshold need not be fixed. It can adaptively decrease over time if the algorithm appears to
be requiring too much time. As a result, real-time response is possible. Such an approach is fleshed out in
??, using choices based on the empirical results.

4.8.5 Drop-dead pruning
The Stop Dead pruning algorithm is an alternative algorithm that is simpler but empirically less effective.
Instead of having a pruning threshold, Stop Dead has a time limit. Stop Dead performs no pruning at all until
the time limit is reached. At that time, the root goal itself is pruned.

4.9 Other language features
This chapter thus far has described DDP as an analysis of a subset of Smalltalk. This chapter describes
modifications sufficient to address a number of features present in Smalltalk.

4.9.1 Primitive methods
Smalltalk has primitive methods in addition to normal methods. A primitive method has the usual attributes
of a method, plus additionally a reference to some primitive routine in the underlying interpreter. Whenever
a send or sendvar method invokes a primitive method, the designated primitive routine is executed instead
of the block of the method. If the routine is successful, then control passes directly back to the send or
sendvar statement. If the routine is not successful, then the block of the method executes after all, just as if
the method were not primitive. The block is called the fail code of the method, because it is only executed if
the interpreter routine has not succeeded for some reason.

Correct analysis requires that the analysis account for the possible execution of primitive methods. For
each primitive, there are four possible approaches:

• Use the general framework described below.

• Use a conservative approximation suitable for any well-behaved primitive routine.

• Include specialized support for the method.

• Ignore the primitive routine.

The first approach is to provide the following information to the algorithm:

• typeWhenSentTo:withArgumentTypes:, a function mapping a list of argument types and a receiver
type to the type returned by the routine.

• canFailWhenSentTo:withArgumentTypes:, a function mapping a list of argument types and a re-
ceiver type to a boolean designating whether the primitive can fall into the method’s fail code when
invoked with objects of the specified types.

• receiverEscapes, a function designating whether the receiver can flow to an arbitrary flow position
after this routine is invoked.

• argumentEscapes:, a function designating whether a particular argument can flow to an arbitrary
flow position after the routine is invoked.

4.9. OTHER LANGUAGE FEATURES 43

Adjusting the solution strategies to account for primitive methods is straightforward when they can be
accurately described with the above four attributes. The strategies for type queries on message-send expres-
sions need to check the contribution of the primitive to the type returned by a method, and they need to ignore
return statements in the method if the primitive does not fail with the supplied arguments. The queries on
flow via message sending need to check whether flow into any invoked primitive method can escape; if so,
then the target of the relevant flow judgements must be >fp.

The second approach is to use a single conservative approximation for all of the above properties: the
return type is >, the routine can fail regardless of the argument types, and the receiver and arguments have
escaping flow. So long as the primitives are well behaved, this approximation will yield correct results. As a
few examples, well behaved primitives may not modify the stack of running activations, invoke some other
method, or modify the program; on the other hand, well behaved primitives may access external state and
create new objects that do not have instance variables.

The third approach is to add specialized support to the implementation. The rare cases that such support
are necessary are described in ??.

Finally, some primitive routines may be safely ignored. Certainly, if the primitive is known to be only an
optimization of the method’s fail code, then the primitive may be ignored. Additionally, a method’s primitive
may be ignored if, for some reason, the method is assumed never to be invoked. In this case the correctness
of the analysis depends on whether the method is invoked. It is better to have fewer methods assumed not
to be invoked, but it may be impossible to reduce the number to zero. Some methods, such as those for
constructing a program and those for debugging a process, are simply too difficult to model effectively.

4.9.2 Instance creation

The new statement in STbp is implemented in full Smalltalk as a primitive method called #basicNew. This
primitive is well behaved, in the meaning specified in the previous section, and thus it can be supported by
DDP with the usual mechanism for handling primitives.

To see that this approach results in precise analysis, one must consider the way classes are represented
in Smalltalk. In Smalltalk, classes are normal objects. All objects have a class, and the class of a nor-
mal class object is another class object called a metaclass. (The class of a metaclass is the normal class
MetaClass.) Each metaclass has a single instance throughout the execution of any Smalltalk program. Thus
the typeWhenSentTo:withArgumentTypes: method for the #basicNew primitive can determine with ac-
curacy which class is being instantiated: the type of a class will be a class type where the class is a metaclass,
and each metaclass has only a single instance, in this case the class that is about to be instantiated.

4.9.3 Multiple processes

STbp programs have a single process. Full Smalltalk programs may start new processes by invoking the
#fork primitive method on a block object. The analysis needs to account for the fact that the statements in
the block may execute even though there is no direct flow of control to the statements other than through the
#fork method.

In fact, the justification rules of Chapter 7 do account for the execution of such statements. Senders-of
goals to methods invoked by statements in the block, will consider message-send statements in the block as
possible senders. Type goals for variables assigned in the block, will account for those assignment statements.
Flow goals for variables accessed in the block will account for flow due to those statements executing.

Note that the situation is different for any Smalltalk implementation where processes are started with
blocks that have one or more arguments. Then, statements that access the parameter of the block, may try to
find a type judgement on one of the parameters of the block. Without care, those type judgements might judge
the type to be ⊥. In such a Smalltalk, the justification rule for the type of a parameter of a block, must also
check whether the block ever flows into #fork primitive method; if so, then an appropriate type—possibly
>—must be unioned to the type judged for the parameters of the block.

44 CHAPTER 4. THE DDP ALGORITHM

4.9.4 Exceptions
Standard Smalltalk implementations include exceptions. Smalltalk exceptions are more flexible than in many
languages with exceptions, in that an exception handler can choose to resume the context that signaled an
exception. If they choose to resume it, they can even pass an object to the exception-raising context. Thus,
data can flow in both directions when an exception is raised and handled. As an example of the power of this
feature, note that it is sufficient for implementing dynamically bound variables: dynamically bound variables
are exception types, bindings of such a variable are exception handlers, and accesses to those variables are
raises of the exception type.

Control- and data-flow through exceptions can be analyzed precisely [61], but the analysis is complicated.
Since typical programs only use exceptions for the purpose of short-circuiting control-flow paths—and rarely,
for example, to implement dynamic variables—it should suffice to implement a conservative approximation.

A working conservative approximation for data flow is to assume that any value passed into an exception’s
methods can flow to anywhere in the program, and that any value read via an exception’s methods can be of
any type. Given this conservative data-flow approximation, nothing needs to be added to control flow. The
control-flow queries of DDP are queries about the call graph. Control paths involving exceptions are never
asked about and thus do not need to be computed.

Naturally, this conservative approximation can be refined if one does add control-flow queries for ex-
ception handling. One could add the queries “which handler responds to this exception-raise” and “which
exception-raises might have invoked this handler.” Given such queries, one could then add more precise
data-flow computations. This avenue has not been explored by the authors.

4.9.5 Message sends to super

In addition to regular message sends, Smalltalk, like most object-oriented languages, includes “super” mes-
sage sends. A super send uses a modified message-lookup algorithm from the standard lookup function
described in section 5.11. Instead of searching for a responding method by starting at the responding object’s
class, it begins by searching at the superclass of the method where the super send appears. This lookup can
be performed statically with perfect precision.

Modifying DDP to account for super sends is straightforward. Responders queries on a super send
simply use the static lookup algorithm. They do not need to perform a type query on the receiver. Senders
queries on a method must consider super sends in addition to regular message sends. To do so, they must add
to their response all super sends which might, according to the static lookup algorithm, invoke the method
in question. Senders queries on a block need no modification, because super sends only invoke methods.

4.9.6 Initial state
STbp programs begin with an empty heap and start execution at a specific method. Full Smalltalk programs
begin with a populated heap of objects and with a number of running processes. The justification rules need to
be adjusted so that they account for this initial state. The required modification is simple: adjust the solution
strategy for type queries to include, in addition to the type found by the usual solution strategies, the types
found by scanning the initial heap and stacks.

4.9.7 Arrays and other collections
Arrays in Smalltalk are supported by a combination of two implementation features: class definitions may
include a declaration that a class is indexable, and there are primitive methods #at : and #at : put : available
to read and write to the indexed slots in an instance of such a class.

DDP handles arrays conservatively by ignoring the indexable declaration, and by treating the #at : and
#at : put : methods pessimistically: they might return a value of any type, and any object that is #put : into
an indexed slot flows to >fp.

4.10. IMPLEMENTATION ISSUES 45

4.9.8 Array literals and sendvar

Literal statements in full Smalltalk may create arrays that contain selector objects. Since the contained
selector objects might eventually be used by a sendvar statement, it is important for the analysis to account
for them. A conservative approach is to maintain an extra table named arrayLiteralsWithSelector in
addition to the other tables described in ??. This table gives all array literal statements in the program that
contain a specified selector. The analysis uses this table to determine whether it can accurately predict what
statements will invoke a particular method; if the method’s selector appears in any array literal in the program,
then it is impossible to accurately find the senders and thus the method should be given a sender set of >s.

4.9.9 Flow of literals
Many literals in Smalltalk break the assumption of STbp that each evaluation of a literal expressions yields a
different object. Every evaluation of true, for example, yields the exact same true object in full Smalltalk.
As a result, justified flow judgements in DDP do not account for the full flow possibilities of these values. It
is possible for these values to flow, in the carefully defined sense of Chapter 6, in other ways than through
assignment statements, message sending, and so on. It is possible for them to appear at remote locations in
the program that are unrelated by the usual flow calculations.

Such a situation is beyond the supported usage of DDP, however. Under normal usage, flow is only
computed for blocks and selectors, not for any other values, much less values that appear as literals. Each
block appears only once in a program, and thus it is immune to the possible problem under discussion. For
symbols, the standard DDP solution strategies simultaneously find flow for all occurrences of a symbol of
interest, thus eliminating the possibility that a symbol literal will appear in a location outside of the computed
flows.

The current theory of flow and of literal expressions has been chosen for intuitiveness and brief descrip-
tion. Under normal usage of DDP, even on full Smalltalk, it provides an accurate description. It would
be possible, instead, to allow STbp literal expressions to evaluate to the same object multiple times, while
redefining the correctness criterion of flow judgements to ignore such appearances, and thus obtain a more
complicated theory that is closer to full Smalltalk. However, the added complication has been deemed too
high a price for the payoff in extra assurance from the theory.

4.10 Implementation issues
This section describes some issues that arise during practical implementation of DDP.

4.10.1 Maintaining tables about syntax
The solution strategies given above frequently require scanning the program to find statements matching
some criterion. For example, finding the type of a variable requires finding all statements that assign a value
to the variable. To make such scanning fast, implementations should pre-compute and maintain the following
tables:

• methodsImplementing, which maps each possible selector to the list of methods in the system that
implement the method. This is useful in responders-to goals where the receiver type is >.

• expressionsSending, which maps each selector to the list of send statements that send the selector.
This is useful for finding the send statements that may invoke a method.

• selectorLiterals, which maps each selector to the list of statements assigning that selector to a
variable. This is useful for finding the sendvar statements that may invoke a method.

• assignmentsDefining, the list of statements that assign something to a variable. This is useful for
type goals.

46 CHAPTER 4. THE DDP ALGORITHM

• expressionsReading, the list of statements that read from a variable. This is useful for flow goals.

These tables must be updated whenever the programmer modifies the code base. The code changes are
straightforward and, in most cases, are proportional to the amount of code that is affected by the change. For
example, if the programmer adds a new method is added to the code base, then:

• The method’s parse tree is added to parseTrees.

• The method is added to the list in methodsImplementing corresponding to the method’s name.

• For each message-send expression in the method, the expression is added to the appropriate list in
expressionsSending.

• For each literal expression in the method where the literal is a symbol, the expression is added to the
symbol’s list in symbolLiterals.

• For each assignment statement in the method, the statement is added to the list of statements in
assignmentsDefining corresponding to the variable on the left-hand side of the assignment state-
ment.

• For each variable expression, the expression is added to the appropriate list in expressionsReading.

These changes are reversed when a method is removed. All other code changes are described as a combination
of method removals followed by method additions. Examples of such changes are:

• If a method is changed, then the tables are updated as if the method was removed followed by the
method being added.

• If a class definition is changed, then the tables are updated as if every method in the class and its
subclasses were removed before the definition change and added back after the definition change.

The time taken for these updates are proportional to the existing overhead of a Smalltalk dynamic byte-
code compiler, which already is invoked after every code change. For example, when a new method is
added, Chuck updates its tables as described above, and the system compiles that method to byte code. The
additional overhead involved in maintaining the syntactic data structures is imperceptible.

4.10.2 Parse tree compression
Storing expanded parse trees for every method in the system takes considerable storage, both in number of
bytes and number of objects. Yet, each execution of DDP is likely to access only a small fraction of all
the parse trees in the image. In-memory parse tree compression is a useful technique to address these two
observations: it lowers the number of bytes required, greatly lowers the number of objects required (because
the compressed parse trees can be stored as binary arrays), and, because few parse trees are needed per
execution, typically does not cause a large slowdown.

The general approach is for the lookup tables to refer to expressions and methods indirectly. Instead of
holding object references to the expressions and methods, they hold a reference to a tuple of the method’s
specification (class plus selector) plus the integer index of the expression within the method. Decompressed
parse trees can be cached during each execution of DDP so that they are only decompressed once per execu-
tion.

4.10.3 Supporting external source code
Ideally, the implementation can analyze code regardless of whether it is the code of the currently running
image. If an implementation is flexible, then it supports interactive programming tools both for the installed

4.10. IMPLEMENTATION ISSUES 47

code and for code stored outside the image. Additionally the test cases for the implementation are able to test
the analysis against entire code bases that have been carefully crafted to exercise the implementation.

One challenge of such a flexible implementation is that there are multiple classes named Object, multiple
classes named Block, and so on—one class for each code base that is potentially analyzed. In order to
access the particular class relevant to the current execution of DDP, many methods must have a parameter
that specifies the list of classes for this execution even though they do not have such a parameter in the on-
paper description of DDP. The number of such methods can be reduced, however, if class BlockType holds a
reference to the appropriate Block class for the current execution, and the SelectorType class likewise holds
a reference to the appropriate Selector class.

48 CHAPTER 4. THE DDP ALGORITHM

Chapter 5

Mini-Smalltalk

This chapter begins the formal description of the DDP algorithm. This chapter defines the syntax and seman-
tics of Mini-Smalltalk, the language analyzed by the formal version of DDP. Adaptation of DDP for the full
Smalltalk language is described in ??.

5.1 Overview
The present work defines a semantics tuned for giving an accurate description and a proof of correctness of
the more interesting parts of the type-inference algorithm. Since Smalltalk has such a simple semantics, it
seems worthwhile to spend a few pages describing a semantics tuned for the present purposes in exchange
for simplifying the rest of the work. This semantics includes:

• The essential parts of a class-based, object-oriented language, including classes, objects, messages, and
methods.

• Single inheritance of classes.

• Blocks with full closure semantics.

• Nested mutable variables within blocks. This feature greatly increases the complexity of the semantics
and has thus been omitted from other authors’ analogs to Mini-Smalltalk. Since the feature can intro-
duce subtle errors into a program analysis, it is included in Mini-Smalltalk despite the complexity it
entails.

• The perform: primitive, called sendvar in Mini-Smalltalk, which allows invoking a method with a
computed name. This feature is non-trivial to support and also allows for subtle analysis errors.

Several features are omitted because they increase the complexity of the semantics but do not provide
new insight.

• Arrays.

• Primitive methods such as addition and input/output.

• Processes.

• Classes as full-fledged objects.

The implementation supports these features in straightforward manners described in ??.
Some reflective features are omitted because they are primarily intended to be used in the development

environment and because supporting them is beyond the scope of most program analyses. Examples include
the object-inspection tool that can modify objects in arbitrary ways, the ability to reference instance variables
by name (#instVarAt : and #instVarAt : put :), and the thisContext facility for accessing the call stack.

49

50 CHAPTER 5. MINI-SMALLTALK

5.2 Terminology

When discussing syntax, this paper uses Smalltalk terminology, thus keeping Mini-Smalltalk syntax close to
that of Smalltalk. For example, block statement is used instead of lambda expression. On the other hand,
when discussing semantics, the paper uses common terminology of the semantics literature. For example,
closure is used instead of block.

5.3 Language overview

Mini-Smalltalk is a language that captures the essence of Smalltalk [8]. It includes the Smalltalk features
used in application-level programming, but it does not include introspective features intended for use by
the compiler or debugger. It also includes some differences from Smalltalk that simplify the theory without
removing any power:

1. There are no compound expressions. Instead, there are sequences of simple statements that use tempo-
rary variables to store intermediate results.

2. Distinctions among class, pool, and global variables are ignored. Instead, they are all treated as global
variables. The distinctions are unimportant for analysis because they only affect visibility and otherwise
have the same semantics.

3. Classes are not values. Instead, new is a syntactic form.

4. There are no return statements (designated with ˆ or ↑ in Smalltalk). Instead, every block, including
the main block of a method, must include a variable to return and an indication of whether the value
should be returned from the current block or from the surrounding method.

5.4 Syntax

The abstract syntax of Mini-Smalltalk is given in Figure 5.1.
A Mini-Smalltalk program consists of a set of global variables and a finite map from class names to

classes. Each class has an optional superclass, a set of instance variables, and a finite map from method
names to methods. Each method has a block, called the main block of the method. Each block has a number
of parameters, a number of local variables, and a number of statements. When the block finishes executing,
it returns a value either to the statement that invoked the block or (non-locally) to the statement that invoked
the surrounding method.

Each statement has one of the following forms:

• l := self. This statement assigns the current receiver to variable l.

• l := literal. This statement assigns a literal, such as 4 or ’hello world’, to a variable.

• l := lr. This statement assigns the contents of one variable to another variable.

• l := new classname. This statement instantiates a new object of the class named classname.

• l := block. This statement creates a closure, just like a lambda expression in Scheme.

• l := send(rcvr, selector, arg1. . . argm). This statement sends a message to rcvr. The expression requests
that a method matching selector will execute, and it supplies arg1 . . . argm as parameters to the method.

5.4. SYNTAX 51

〈program〉 ::= Program
globals: 〈label〉 ∗
classes: (〈label〉 〈class〉) ∗

〈class〉 ::= Class
superclass: (〈label〉 |undef)
methods: (〈label〉 × 〈method〉) ∗
instance variables: 〈label〉 ∗

〈method〉 ::= Method 〈block〉

〈block〉 ::= Block
parameters: 〈label〉 ∗
temporaries: 〈label〉 ∗
statements: 〈statement〉 ∗
returning: 〈label〉
retFromMethod: 〈boolean〉

〈statement〉 ::= 〈label〉 := self

| 〈label〉 := 〈literal〉
| 〈label〉 := 〈label〉
| 〈label〉 := new 〈label〉
| 〈label〉 := 〈block〉
| 〈label〉 := send(〈label〉 , 〈selector〉 , 〈label〉 ∗)
| 〈label〉 := sendvar(〈label〉 , 〈label〉 , 〈label〉 ∗)
| 〈label〉 := beval(〈selector〉 , 〈label〉 ∗)

〈selector〉 ::= Selector
label: 〈label〉
numargs: 〈integer〉

Figure 5.1: Abstract Syntax of Mini-Smalltalk

52 CHAPTER 5. MINI-SMALLTALK

• l := sendvar(rcvr, selectorvar, arg1. . . argm). This statement also sends a message, but the selector of
the method to invoke is read from selectorvar. This statement supports the #perform : functionality
of Smalltalk, although notice that in Mini-Smalltalk, the only way to create a selector object is via a
literal statement. There is no method in Mini-Smalltalk to convert a string to a selector. The analysis
assumes that the program does not use any such feature that is present, just as it assumes the program
uses no introspective debugging features.

• l := beval(blockvar, arg1. . . argm). This statement reads a closure from the variable named blockvar
and invokes it.

Notice that some elements of syntax in Mini-Smalltalk are primitive methods in full Smalltalk. To analyze
such constructs, implementations of DDP should treat such primitive methods as if they contained a single
statement with the corresponding syntactic element from Mini-Smalltalk. For example, any method that
references the block-evaluation primitive would be treated as the following Mini-Smalltalk method:

value

| block result |
block := self.

result := beval block.

return result.

Similarly handled are the primitive methods for sendvar. The primitive method for new is handled
differently, as described in the previous section.

As a matter of notation, an expression like foo.bar refers to the bar component of foo. For example, if

P = Program globals: g classes: c

then P.globals = g and P.classes = c.

5.5 Concrete syntax for methods
The abstract syntax is convenient for mathematics but cumbersome for manipulation of large amounts of
code. A concrete syntax for methods is summarized in Figure 5.2. The concrete syntax is more convenient
for the larger amounts of code given in examples and is closer to the syntax of full Smalltalk.

5.6 Valid programs
A program P is a valid program if it has the following properties:

1. All variable labels are different from each other. This causes no loss of generality because Mini-
Smalltalk is lexically scoped. If two variables have the same label, then one or the other may be
renamed without changing the meaning of the program.

2. P.classes includes a class UndefinedObject. That class has no instance variables, and it does have a
method with selector #DoIt.

3. P.classes includes two more classes Block and Selector which have no instance variables.

4. The class hierarchy is acyclic: no non-empty chain of superclass attributes will link a class back to
itself.

5.7. LITERALS 53

〈method〉 ::= 〈header〉 〈block body〉
〈header〉 ::= 〈unary selector〉

| (〈keyword〉 〈identifier〉) ∗
〈block body〉 ::= (“|′′ 〈identifier〉 ∗ “|′′)

(〈statement〉 “.′′) ∗
“ˆ”? 〈identifier〉

〈statement〉 ::= 〈identifier〉 ← self

| 〈identifier〉 ← 〈identifier〉
| 〈identifier〉 ← 〈literal〉
| 〈identifier〉 ← new 〈identifier〉
| 〈identifier〉 ← “[′′(“ :′′ 〈identifier〉) ∗ 〈block body〉 “]′′

| 〈identifier〉 ← 〈identifier〉 〈unary selector〉
| 〈identifier〉 ← 〈identifier〉 (〈keyword〉 〈identifier〉) +

| 〈identifier〉 ← 〈identifier〉 perform: 〈identifier〉 (with: 〈identifier〉) ∗
| 〈identifier〉 ← beval 〈identifier〉 (with: 〈identifier〉) ∗

Figure 5.2: Concrete syntax for methods of Mini-Smalltalk

5. For all literals lit in literal statements, the class of the literal is included in P.classes. Formally,
lit classes(lit) ⊆ P.classes

6. Every send statement supplies the exact number of arguments that the statement’s specified selector
requires.

7. Every method has the same number of parameters as the method’s selector requires.

Programs in this paper are implicitly assumed to be valid.

5.7 Literals
The precise forms that a literal may take are left unspecified, because those details have no impact on the
overall srtucture of the type inferencer described in this document. A function inst literal, described in
section 5.11, is used to instantiate new literals as a program executes. Further constraints on literals are
described in section 6.3.

5.8 Method specifications and block specifications
The semantics include two new structures that refer to elements of the program being executed: method
specifications and block specifications.

A method specification refers to a method from the source program. Its attributes are:

• class name, the name of the class to which the method belongs

• selector, the selector of the method

54 CHAPTER 5. MINI-SMALLTALK

A block specification refers to a block from the source program. It specifies a method plus a navigation
path through the statements of the method to find a block at an arbitrary level of nesting. Its attributes are:

• method, the method specification for the method containing the block.

• statement nums, a sequence of integers corresponding to statement numbers. An empty sequence
designates the main block of the method. A one-element sequence [i1] designates the block created
by the i1-th statement of the main block (which must be a block statement). A two-element sequence
[i1, i2] designates the block created by statement i2 of the block created in statement i1 of the main
block. Likewise for longer sequences.

Some blocks are nested within others, which gives rise to an ordering among block specifications: b1 v b2
when b1 is nested within b2, as described in Figure 5.3. Additionally, block specifications may be combined
in a simple fashion, as described in Figure 5.4 and Figure 5.5. Note that >bs and ⊥bs elements have been
added in order to complete a lattice; such specifications are meaningless and are included only to simplify
the mathematics.

5.9 Functions over syntax
The set all blocks(P) includes all block specifications in P. It includes the blocks of the methods of P,
and it recursively includes any blocks in block statements within the set. The block associated with block
specification bs in P is designated blockP(bs).

5.10 Semantic structures
This section defines semantic data structures used during the execution of a program.

A contour binds a set of variables. All variable bindings are held in contours in order to support mutation
of variables by the various assignment statements that Mini-Smalltalk includes. A contour is a finite map
from labels to objects. A contour is referred indirectly via a contour id or cid. There are two distinguished
contours: NilCID, the contour of the distinguished object nil, and GlobalsCID, the contour used to bind
global variables.

An object has a class that names the object’s class, and an ivars cid identifying the contour that holds
the object’s instance variables.

There are three kinds of objects:

• A normal object, which is created by either a new statement or by a literal. The class of such an object
may be any class other than Block or Selector.

• A closure is created by a block statement. A closure’s class is always Block. It has two attributes other
than the usual ones for objects:

– sblock is the block statement in the statement that created the closure.
– outer is the activation (defined below) in which the sblock block statement was executed. This

information is needed in the semantics of non-local returns and lexically scoped variable access.

• A selector object is created by a literal statement where the literal specifies a selector. Selector objects
have class Selector and are distinguished by their label and numArgs. They may have no instance
variables.

Selector objects and closures must always have a contour id that references an empty contour.
The distinguished object NilObj is an instance of class UndefinedObject. Its contour id is NilCID, which

will always reference an empty contour.
An activation is the current state of execution for one closure or method. It is analogous to a stack frame

in a typical language implementation. An activation has the following attributes:

5.10. SEMANTIC STRUCTURES 55

BSO-NESTED

(ms, l@l′) v (ms, l)

BSO-TOP

bs v >bs

BSO-BOTTOM

⊥bs v bs

Figure 5.3: Comparison of Block Specifications

BSJ-SYM
bs1 t bs2 = bs3

bs2 t bs1 = bs3

BSJ-TOP

bs t >bs = >bs

BSJ-BOTTOM

bs t ⊥bs = bs

BSJ-DIFFMETH
ms1 , ms2

(ms1, l1) t (ms2, l2) = >bs

BSJ-SAMEMETH
l = longest prefix(l1, l2)

(ms, l1) t (ms, l2) = (ms, l)

Figure 5.4: Join for Block Specifications

BSM-SYM
bs2 u bs1 = bs3

bs1 u bs2 = bs3

BSM-TOP

bs u >bs = bs

BSM-BOTTOM

bs u ⊥bs = ⊥bs

BSM-DIFFMETH
ms1 , ms2

(ms1, l1) u (ms2, l2) = ⊥bs

BSM-DIFFBLOCK
a , b

(ms, l@[a]@l1) u (ms, l@[b]@l2) = ⊥bs

BSM-NESTED

(ms, l) u (ms, l@l′) = (ms, l@l′)

Figure 5.5: Meet for Block Specifications

56 CHAPTER 5. MINI-SMALLTALK

• block spec, a specification for the block that is executing

• pc, the index of the next statement in the block to execute

• caller, the activation that sent the message that created this activation, or undef

• outer, the activation where temporary variables from one lexical scope outward should be looked up,
or undef if there is no such activation

• receiver, the receiver object to which the message was sent

• params cid, a label for the contour holding this block’s parameters

• temps cid, a label for the contour holding this block’s temporary variables

• caller var, the variable into which the return value should be placed

A configuration is a tuple (activation, contours). The activation is either the currently active activation or
the value HALTED. The special value HALTED means that execution is halted, either because execution has
completed or because there has been some dynamic error such as sending a message to an object that does
not understand it. In this semantics, execution never becomes stuck—instead, execution enters the HALTED
state and never leaves it.

The contours part of a configuration tuple is a mapping of contour ids to contours. It holds the current
values referred to by all variables.

Not all objects are sensible to discuss for a particular program and configuration. A valid object for a
program P and configuration cfg must follow some additional restrictions. First, its class must name one of
the classes in P. Second, its ivars cid must be among the contours of cfg. Third, the domain of the specified
contour must be precisely the instance variables of the object’s class in P, including instance variables that
have been inherited. Finally, if the object is a closure, then the activation of the closure’s block must be a
valid activation for P and cfg.

5.11 Semantic functions
This section defines the low-level functions upon which the semantics is built.

The set all objects(cfg) includes all objects in use in configuration cfg, and all activations(cfg) is the
set of all activations that are accessible in configuration cfg. The two functions are mutually recursive.
The base cases are that all objects(cfg) includes all objects in the range of any of cfg’s contours, and
all activations(cfg) includes the current activation of cfg. The inductive cases are that all objects(cfg)
includes the receiver of any one of the activations in all activations(cfg), all activations(cfg) includes the
outer and caller of any activation in all activations(cfg), and finally all activations(cfg) includes the acti-
vation of any block object in all objects(cfg).

lookupP(C, sel) looks up a method in a specified class, given the selector for that method. It returns either
a single method or undef. It is defined recursively as follows:

• If sel ∈ domain(P.classes[C].methods), then P.classes[C].methods[sel].

• Otherwise, if P.classes[C].superclass = undef, then undef.

• Otherwise, lookupP(P.classes[C].superclass, sel).

The function inst literal instantiates a literal. Its arguments are a syntactic literal and a configuration
cfg. It returns an object and a new configuration. The new configuration is identical except that a new contour
has been added; the object’s contour id refers to the new contour. The new object must be a new one; it must
use a contour id that is previously unused.

5.12. INITIAL CONFIGURATION 57

lookup contour((act, cnt), actv, label, allowparam) =

if label ∈ domain(cnt[(actv.temps cid)])
then actv.temps cid

else if label ∈ domain(cnt[(actv.params cid)])
then (if allowparam then actv.params cid else undef)

else if actv.outer , undef

then lookup contourP((act, cnt), actv.outer, label, allowparam)
else if label ∈ all instvarsP(actv.rcvr.class)

then actv.rcvr.ivars cid

else if label ∈ P.globals

then GlobalsCID

else undef

Figure 5.6: Looking up the contour that binds a variable label. (act, cnt) is the configuration in which to
look up the variable, actv is the activation in which to look up the variable, label is the variable’s name, and
allowparam specifies whether the function should succeed if the variable binds to a parameter. allowparam
is used to support parameters being read-only.

cid = lookup contourP(cfg, actv, label, true)
contour = cfg.contours[cid]

contour[label] = read var(cfg, actv, label)

cid = lookup contourP(cfg, actv, label, false)
contour = cfg.contours[cid]

contours′ = contours[cid 7→ contour[label 7→ object]]
cfg′ = (actv, contours′)

cfg′ = write var(cfg, label, object)

Figure 5.7: Reading and writing variables

The function
lookup contourP(cfg, act, label, allowparam)

searches for the contour that binds a specified variable. The last parameter specifies whether contours for
parameters should be returned. The function is defined in Figure 5.6.

The function read var(cfg,actv,label) returns the object that a specified variable holds in a specified
configuration. Note that the activation to read from is specified via the actv parameter. While the semantics
itself will always use the main activation of cfg, the generalized definition of read var will later prove useful
for stating stronger invariants about variable contents. The function write var(cfg,label,object) writes a new
object into a variable and returns the resulting configuration. Both read var and write var are defined in
Figure 5.7.

The initial configuration for P is denoted step0(P). Likewise, stepn(P) represents the program after n
applications of step to the initial configuration.

5.12 Initial configuration
The semantics of Mini-Smalltalk will be described operationally. This section describes the initial con-
figuration for any particular program, and the next section describes the step function which moves one

58 CHAPTER 5. MINI-SMALLTALK

configuration to the next. The initial configuration is a tuple (activation0, contours0) defined as follows.
Let startmeth represent the start method of the program:

startmeth = lookupP(UndefinedObject, #DoIt)

Recall that this method exists in any valid program.
There are four elements of contours0:

• contours0[NilCID] binds the instance variables of NilObj. It is an empty contour.

• contours0[GlobalsCID] binds the global variables. It maps each of the labels in P.globals to NilObj.

• contours0[cidparams] binds the parameters of the start method. Since the start method has no parameters,
this contour is empty.

• contours0[cidtemps] binds the temporary variables of the start method. It maps each of the labels
startmeth.temporaries to NilObj.

The attributes of activation0 are as follows:

• block spec specifies the main block of startmeth.

• pc = 1

• caller = undef

• outer = undef

• receiver = NilObj

• params cid = cidparams

• temps cid = cidtemps

• caller var = undef

5.13 Execution
Execution may now be defined, given the preceding definitions. Mini-Smalltalk execution is defined as an it-
eration of a step function on the initial configuration, thus yielding a sequence of configurations. This section
defines step. Throughout this section, let cfg consist of activation and contours, and let cfg′ = step(P, cfg).
Thus, cfg′ must be defined for an arbitrary program P being analyzed, and an arbitrary configuration cfg.

Trivially, if activation is HALTED, then the cfg′ = cfg. Otherwise, suppose that the pc of the current
activation is within the bounds of its statement array. That is, let statement be the next statement to execute:

statement = block.statements[activation.pc]
where block = lookup blockP(activation.block spec)

and let activationinc be the same as activation except that pc has been incremented, i.e.

activationinc = activation[pc 7→ activation.pc + 1]

Let cfginc = (activationinc, contours). Then there are the following cases:

5.13. EXECUTION 59

• If statement is [[l := self]], then

cfg′ = write var(cfginc, l, activationinc.receiver)

• If statement is [[l := literal]], then let:

(litobj, contourslit) = inst literal(literal, contours)

Then:
cfg′ = write var((activationinc, contourslit), l, litobj)

• If statement is [[l := l′]], then let:

obj = read var(cfg, act, l′)

Then:
cfg′ = write var(cfginc, l, obj)

• If statement is [[l := new class]], then a new object is to be created. If class is Block or Selector, then
cfg′ is halted; closures and selector objects cannot be created with new statements. Otherwise, choose
newcid as a label not in contours. Let newcontour be a contour mapping the instance variables of class
to NilObj. Let newobject be an object whose class is class and whose contour is newcontour. Let

contoursnew = contours[newcid 7→ newcontour]

Then:
cfg′ = write var((activationinc, contoursnew), l, newobject)

• If statement is [[l := block]], then let dynblock be a new closure whose block spec is an extension of
activationinc.block spec to specify the block block, and whose outer is activationinc. Then:

cfg′ = write var(cfginc, l, dynblock)

• If statement is [[l := send(rcvr, selector, arg1 . . . argm)]], then let:

rcvrobj = read var(cfginc, actinc, rcvr)
argobji = read var(cfginc, actinc, argi), ∀i ∈ 1 . . .m
method = lookupP(rcvrobj.class, selector)

If method is undef, then the method lookup failed and the machine halts. Otherwise, a new activation
activationcalled is created for the called method with the following attributes:

block spec = (method, [])
caller = activationinc

outer = undef

receiver = rcvrobj

param cid = newcidp

temp cid = newcidt

caller var = l

60 CHAPTER 5. MINI-SMALLTALK

where newcidp and newcidt are fresh labels. Let contourtemps be a contour mapping each of method.temporaries
to NilObj, and let contourparams be a contour mapping method.parametersi to NilObj for each i ∈
1 . . .m. Let contourscalled be contours with these two contours added:

contourscalled =

contours[newcidp 7→ contourparams, newcidt 7→ contourtemps]

The final configuration is then:

cfg′ = (activationcalled, contourscalled)

• If statement is [[l := sendvar(rcvr, lsel, arg1 . . . argm)]], then cfg′ is computed as if the statement were
a send statement, with the exception that the method selector is:

read var(cfginc, activationinc, lsel)

If the selector is not a selector object, then cfg′ is halted. Otherwise, cfg′ is as described for send
statements.

• If statement is [[l := beval(lb, arg1 . . . argm)]], then cfg′ is similar to that resulting from a send state-
ment. Let:

dynblock = read var(cfginc, actinc, lb)

If dynblock is not actually a block, or if the number of arguments supplied is different than dynblock
requires, then cfg′ is halted. Otherwise, look up the arguments, just as with a message send:

argobji = read var(cfginc, actinc, argi), ∀i ∈ 1 . . .m

Create new labels newcidp and newcidt, and new contours contourparams and contourtemps, just as with
a send statement. The new activation, activation′, will then have the following attributes:

block spec = dynblock

pc = 1
contourid = newcid

caller = activationinc

outer = blockvar.outer

receiver = blockvar.outer.receiver

params cid = newcidp

temps cid = newcidt

caller var = lvar

Then:
cfg′ = (activation′, contours[newcid 7→ contourcalled], heap, globals)

Finally, suppose pc is larger than the number of statements in the current activation. The current block
will return some value. Let lret be the name of the variable that is to be returned. There are two cases:

• Suppose the block returns values from the surrounding method (retFromMethod is true). Then let:

callact = outermost(activation).caller

5.14. VARIOUS SEMANTIC PROPERTIES 61

If callact is undef then execution halts. Otherwise, look up the object to return:

retobj = read var(cfginc, actinc, lret)

and write the appropriate variable and return to the calling activation:

cfg′ = write var((callact, contours), cfginc.caller var, retobj)

• Suppose the block returns values from the current block (retFromMethod is false). Let:

retobj = read var(cfginc, actinc, lret)

Then:
cfg′ = write var((actinc.caller, contours), actinc.outer var, retobj)

5.14 Various semantic properties
Lemma 5.1 (Semantic Sanity). Mini-Smalltalk semantics has many of the properties one would expect.
Several properties are listed below. For each of these properties, P is any program, n is any non-negative
integer, act ∈ all activations(stepn(P)), and obj ∈ all objects(stepn(P)).

• Only the initial activation has a caller or a caller var that is undef. In particular:

act.caller = undef ⇔ act.caller var = undef

• The pc of an activation either points within the range of its available statements or points one past the
end:

1 ≤ act.pc ≤ len(lookup block(act.block spec).statements) + 1

• All contours are within the contours of the configuration:

obj.cid ∈ domain(stepn(P).contours)
act.params cid ∈ domain(stepn(P).contours)

act.temps cid ∈ domain(stepn(P).contours)

• The domain of stepn(P).contours[obj.cid] is precisely the set of instance variables of the object’s class,
obj.class.

• The class of act.receiver is either the class named act.block spec.class name or a descendent of that
class.

• If act ∈ all activations(stepn(P)) is an activation for a block other than a method’s main block, then
act.caller is an activation whose (pc − 1)th statement is a beval statement. Likewise, if act is an
activation for a method’s main block, then the caller’s (pc − 1)th statement is a send or sendvar
statement.

• If act.outer , undef, then act.outer.receiver = act.receiver.

• If act.block spec is the main block of a method, then act.outer = undef.

• If act.block spec is not the main block of a method, then act.outer.block spec is the block immedi-
ately enclosing act.block spec.

62 CHAPTER 5. MINI-SMALLTALK

Proof. The proof is straightforward by induction on the number of execution steps. �

The following lemma claims that contour ids are unique, with only one class of exceptions. The contour
id used to reference an object’s instance variables, for example, is never used by a different object and never
used by an activation to refer to parameters or temporary variables. The contour id used by one activation is
never used by another, except that activations differing only by their pc are considered the same activation at
different stages of execution. This unfortunately complicated exception allows activations themselves to be
immutable, thus simplifying other parts of the semantics. There is no need, for example, for an activation id.

Lemma 5.2 (Distinct Contours). In a given configuration, there is no contour id of an object that is also a
contour id for an activation. There is no contour id for two different objects. There is no contour id for two
activations that differ by more than their pc’s.

Proof. The proof is straightforward by induction on the number of execution steps. Note that whenever the
step creates a new object or activation, it uses fresh contour id’s. �

Lemma 5.3 (Send History for Methods). Suppose that stepn(P) is not halted and that

act ∈ all activations(stepn(P))
act.outermost.sender , undef

Then there is an m < n and an i such that under these definitions:

method = lookup meth(act.outermost.block)
selector = method.selector

cfgm = stepm(P) = (actm, cntm)
statementmi = lookup block(actm.block).statements(i)

statementmi is either a send statement with selector selector, or a sendvar statement. If statementmi is a
sendvar statement, then it reads its selector from some variable selectorvar such that:

sobj = read var(cfgm, actm, selectorvar)

where sobj is a selector object for selector. The variable assigned by statementmi is the variable recorded in
act.outermost.caller var. Furthermore, the receiver rcvr of the send statement is such that:

lookupP(read var(cfgm, actm, rcvr).class, selector) = methodn

and each parameter has the value specified in the call statement:

∀k : act.outermost.paramsk = read var(cfgm, actm, argvark)

Proof. The proof is by induction on the number of execution steps. The lemma is trivially correct for the
initial configuration. Suppose it is true for stepn−1(P), and it will be shown for stepn(P).

If the next statement to execute in configuration n−1 is a send or sendvar statement, then all activations
in stepn(P) but one are also activations in stepn(P), disregarding changes to pc’s. For the solitary new
activation, choose m = n − 1 and i as the current pc from stepn−1(P), and the conditions will clearly be true.
For all other activations, choose the same m and i as was chosen for each activation in stepn−1(P).

If the next statement is a beval, then again there is only one new activation. For that activation, choose
the same m and i as was chosen for its outer activation. For the other activations, choose the same m and i as
before.

5.14. VARIOUS SEMANTIC PROPERTIES 63

If the next statement is not a send, sendvar, or beval statement, then the new activations are a subset
of the old ones, and the same m’s and i’s may be chosen for step n as for step n − 1. Note that no statement
in Mini-Smalltalk may bind a parameter to a different object in an existing activation; the only way to bind a
parameter is to create a new activation. �

Lemma 5.4 (Send History for Blocks). Suppose that stepn(P) is not halted and that

act ∈ all activations(stepn(P))
act.outer , undef

Then there is an m < n and an i such that under these definitions:

cfgm = stepm(P) = (actm, cntm)
statementmi = actm.block.statements(i)

statementmi is a beval statement. The variable blockvar that it reads its variable from is such that:

blockobj = read var(cfgm, actm, blockvar)

where blockobj is a closure for block block and outer activation act.outer. The variable assigned by statementmi

is act.caller var. Finally, each parameter has the value specified in the beval statement:

∀k : act.paramsk = read var(cfgm, actm, argvark)

Proof. The proof is similar to that for the Send History Lemma for Methods. Induct on the number of
execution steps. The lemma is trivially true for the initial configuration. Suppose that it is true in configuration
stepn−1(P), and it will be shown that it is also true in stepn(P).

If the next statement to execute in stepn−1(P) is a beval statement, then there is one new activation in
stepn(P). If act is that activation, choose the same m and i as was chosen for its outer activation. For the
other activations, choose the same m and i as before.

If the next statement is a send or sendvar statement, then there is only one new activation, and act cannot
be that one because act.outer = undef. For all other activations, choose the same m and i as in stepn−1(P).

If the next statement is neither a beval, send, nor sendvar statement, then choose the same m and i for
act as was chosen in stepn−1(P). �

64 CHAPTER 5. MINI-SMALLTALK

Chapter 6

Data-flow analysis in Mini-Smalltalk

This chapter continues the formal description of DDP by describing a general framework for discussing
data flow in Mini-Smalltalk. Thus, this chapter formally describes the answer provided by a type inference
execution, as well as the intermediate structures a type inferencer uses while it runs.

6.1 Preliminaries
The function remove redundancies operates on any set with a relation v. It removes all elements from a
set that are subsumed by another element of the set. Formally, it is defined as follows:

remove redundancies(s) = {x ∈ s | ¬∃y ∈ s : x , y ∧ x v y}

6.2 Variables
The result of a type inference and the rules of justification for those results are defined in terms of the static
program and its variables; they are statements such as “this variable has this type”. The correctness of those
results is defined in terms of the dynamic behavior of the program; e.g. “this variable has this type, in this
configuration”. Yet, the semantics of the program are given in terms of labels, not in terms of any concept
of “variable”. Thus there is a disconnect between how the algorithm results are stated, how the correctness
criteria are stated, and how the semantics is stated. This disconnect is bridged by variables.

6.2.1 Definition
Figure 6.1 gives a summary of the four possible kinds of variables in Mini-Smalltalk. The meaning of each
kind should be apparent from its name.

〈variable〉 ::= GlobalVar named: 〈label〉
| InstanceVar ofClass: 〈label〉 named: 〈label〉
| Parameter ofBlock: 〈block spec〉 named: 〈label〉
| TemporaryVar ofBlock: 〈block spec〉 named: 〈label〉

Figure 6.1: Variables

65

66 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

6.2.2 Variables found dynamically
The semantics has been carefully defined so that every activation is linked to the appropriate block from the
original program. Thus, every variable reference that occurs during execution may be traced to the associated
static variable from the program. To do this, an analyzer begins at an activation and looks at the temporaries
and then the parameters of the activation; if there are any outer activations, then their temporaries and pa-
rameters are checked as well; if the label appears in none of these activations, then the instance variables are
checked. Finally, if none of these locations binds the variable, the global variables are checked.

The function dynamic bindings, defined in Figure 6.2, performs this search. Given any configuration
and an activation within that configuration, dynamic bindings will find a binding map describing the vari-
ables readable from act. A binding map is a partial function whose domain includes a finite number of labels
plus the special values method and block. The binding map maps each readable label to a variable describ-
ing the variable that will be read from if that label is read from the specified activation. A binding map also
maps method and block to the method and block that are executing.

6.2.3 Variables found statically
Since Mini-Smalltalk uses lexically bound variables, static analysis can predict which variables will be bound
by each variable reference in the program. The function static bindings, defined in Figure 6.3, maps a block
specification to a binding map. It finds variable bindings by tracing through blocks, then class definitions,
and finally the list of globals declared in the program.

A valid variable for a program P is one that is in the static bindings of some block of the program, i.e.:

∃block spec : ∃l : var = static bindingsP(block spec)[l]

The function bound stats may be used to enumerate the statements of a program along with variable
information. bound stats(P) is the set of all statements in the program paired with the binding maps that
are in effect for those statements. Formally, it is defined as the smallest set satisfying:

bs ∈ all blocks(P)
stat ∈ blockP(bs).statements

bindings = static bindingsP(bs)

(stat, bindings) ∈ bound stats(P)

6.2.4 Properties of variables
This section proves a few useful properties about variables.

Theorem 1 (Lexical Binding of Mini-Smalltalk). For any program P, for any configuration cfg = stepn(P),
and for any activation act ∈ all activations(cfg):

dynamic bindingsP(cfg, act) = static bindingsP(act.block spec)

Proof. The proof is by induction on the number of steps of execution.
In configuration step0(P), the property is straightforward to show by a case analysis. Consider, in turn,

labels for the temporary variables of the start method, the parameters of the start method, the global variables,
and labels that are none of these. The static and dynamic binding of the labels are the same in each case.

Suppose then that the property is true in stepn(P); it must be shown that it is still true in stepn+1(P). To
avoid triviality, suppose that neither configuration is halted.

If stepn(P) executes a send or sendvar statement to reach stepn+1(P), then there is precisely one new
activation in stepn+1(P), disregarding changes to pc’s. As with the argument in the initial configuration, it is
straightforward to show that the property holds in this new activation.

6.2. VARIABLES 67

act.outer = undef

block spec = act.block spec
meth spec = block spec.meth spec g1 . . . gp = domain(cnt[GlobalsCID])

∀ k ∈ 1 . . . p : gvk = (GlobalVariable named: gk) i1 . . . iq = domain(cnt[act.rcvr.ivars cid])
∀ k ∈ 1 . . . q : ivk = (InstanceVariable ofClass: act.rcvr.class named: ik)

p1 . . . pr = domain(cnt[act.params cid])
∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock: block spec named: pk)

t1 . . . ts = domain(cnt[act.temps cid])
∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock: block spec named: tk)

bindings0 = [method→ meth spec, block→ block spec]
bindings1 = bindings0[g1 → gv1, . . . , gp → gvp]
bindings2 = bindings1[i1 → iv1, . . . , iq → ivq]

bindings3 = bindings2[p1 → pv1, . . . , pr → pvr]
bindings = bindings3[t1 → tv1, . . . , ts → tvs]

bindings = dynamic bindingsP((topact, cnt), act)

act.outer , undef

block spec = act.block spec p1 . . . pr = domain(cnt[act.params cid])
∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock: block spec named: pk)

t1 . . . ts = domain(cnt[act.temps cid])
∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock: block spec named: tk)

bindingsouter = dynamic bindingsP(cfg, act.outer) bindings0 = bindingsouter[block→ block spec]
bindings1 = bindings0[p1 → pv1, . . . , pr → pvr]

bindings = bindings1[t1 → tv1, . . . , ts → tvs]

bindings = dynamic bindingsP((topact, cnt), act)

Figure 6.2: Dynamic Variable Binding

68 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

block spec = BlockSpec methodSpec: method spec statementNums: []
method spec = MethodSpec className: class selector: selector

method = lookup methP(method spec)
method = Method block: block

block = Block parameters: params temporaries: temps statements: stats
P = Program globals: globals classes: classes

g1 . . . gp = globals ∀ k ∈ 1 . . . p : gvk = (GlobalVariable named: gk)
i1 . . . iq = all instvarsP(class) ∀ k ∈ 1 . . . q : ivk = (InstanceVariable ofClass: class named: ik)

p1 . . . pr = params ∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock: block spec named: pk)
t1 . . . ts = temps ∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock: block spec named: tk)

bindings0 = [method→ meth spec, block→ block spec]
bindings1 = bindings0[g1 → gv1, . . . , gp → gvp]
bindings2 = bindings1[i1 → iv1, . . . , iq → ivq]

bindings3 = bindings2[p1 → pv1, . . . , pr → pvr]
bindings = bindings3[t1 → tv1, . . . , ts → tvs]

bindings = static bindingsP(block spec)

block spec = BlockSpec methodSpec: method spec statementNums: snums
snums = append(snums′, snum)

block = lookup blockP(block spec)
block spec′ = BlockSpec methodSpec: method spec statementNums: snums′

block = Block parameters: params temporaries: temps statements: stats
p1 . . . pr = params ∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock: block spec named: pk)
t1 . . . ts = temps ∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock: block spec named: tk)

bindings0 = static bindingsP(block spec′) bindings1 = bindings0[p1 → pv1, . . . , pr → pvr]
bindings2 = bindings1[t1 → tv1, . . . , ts → tvs]
bindings = bindings2[block→ block spec]

bindings = static bindingsP(block spec)

Figure 6.3: Static Variable Binding

6.3. TYPES 69

Suppose then that stepn(P) executes a beval statement. Again, there is one new activation, but now
the new activation has an outer activation. Consider any label l. If l is a temporary variable or parameter
of the new activation, then it is straightforward to show that the static and dynamic bindings are the same.
Otherwise, the dynamic binding of l in the new activation is the same as the dynamic binding of l in the new
activation’s outer activation. Further, the static binding of l in the new activation’s block is the same as the
static binding of l in the activation surrounding the new activation’s block. By the Semantic Sanity Lemma,
the block of the outer activation, must be the same as the outer block of the new activation. Thus, by the
inductive assumption, the static and dynamic bindings of the new activation must be the same.

If stepn(P) executes some other statement, or returns from a block, then there are no new activations in
stepn+1(P).

Thus in all cases, the property remains true in stepn+1(P). �

The following lemma shows that the same contour is never used to hold different variables.

Lemma 6.1 (Unshared Contours). Suppose that cfg = stepn(P), that act1 and act2 are among all activations(cfg),
and that l is any label for a variable readable in both act1 and act2. Then:

lookup contourP(cfg, act1, l, false)
= lookup contourP(cfg, act2, l, false)
⇒ dynamic bindingsP(cfg, act1)[l]

= dynamic bindingsP(cfg, act2)[l]

Proof. The proof is by induction on the number of steps of program execution. In the initial configuration,
there is only one activation, and the proof is trivial. Suppose, then, that the statement is true in stepn(P); let
us show that it is true in stepn+1(P). Assume, to avoid triviality, that stepn+1(P) is not halted.

If the statement to execute is a send or sendvar statement, then there is one new activation in stepn+1(P)
that was not present in stepn(P). Suppose act1 is the newly created activation, and act2 is some other activa-
tion. The activation act1 has a newly created contour, and lookup contourP(cfg, act1, l, false) must be that
contour because act1 has no outer activation. On the other hand, the contour lookup contourP(cfg, act2, l, false)
must have existed in stepn(P). Thus, the two contours cannot be the same, and the desired statement is vac-
uously true. Likewise if act2 is the newly created contour. If act1 = act2 then the proof is trivial. If neither
act1 nor act2 is the newly created activation, then the proof is by the inductive assumption.

If the statement to execute is a beval statement, then again there is one new activation created and one
new contour. Suppose that act1 is the newly created activation; the other cases need no further attention. If
lookup contourP(cfg, act1, l, false) is the newly created contour, then the statement is vacuously true. If it
is some other contour, then it must be the same as lookup contourP(cfg, act1.outer, l, false). Thus,

dynamic bindingsP(cfg, act1)[l] = dynamic bindingsP(cfg, act1.outer)[l]

Since act1.outer is an activation that was present in stepn(P), the inductive assumption gives the desired
property.

All other statement types do not create any new activations, and thus the inductive assumption is already
strong enough to give the desired property. �

6.3 Types
A type is a set of objects. Types in DDP must be in one of the following forms:

• {|C|} is the class type containing all objects whose class is named C.

70 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

• S {|s,m|} is the selector type containing selector objects whose label is s and whose number of arguments
is m.

• B{|bs|}ctx is the block type containing all closures created by the statement specified by bs, whose outer
activation matches context ctx. Contexts are defined in the next section; types and contexts are defined
with mutual recursion. ctx must not be ⊥ctx, the empty context.

• Σts is a sum type where ts is a finite set of the above kinds of types. It includes all objects that are
included in any of the elements of ts. No element of ts may be a subtype of another. The size of ts must
be at least 2.

• ⊥ is the empty type, the type including no objects.

• > is the universal type, the type including all objects.

Additionally, the notation {|C|}+ is shorthand for a “class cone type” which includes all objects that are
members of C or a subclass of C. It is only well-defined in the context of an implicitly understood program
P. Formally,

{|C|}+ = Σ
{{|C′|} | C′ = C ∨ C′ inherits from C

}

Notice that subtyping is separated from subclassing in DDP. The type {|Integer|} is not a subtype of
{|Number|}. The type {|Number|} includes only those objects whose class is exactly Number, not whose class is
Number or a subclass of Number. In other words, {|Number|} and {|Number|}+ are different types.

Types may be compared with the subtype relationship defined in Figure 6.4. The relation is defined such
that whenever t1 v t2 and object is a member of t1, then object is also a member of t2. Additionally, types may
be combined using the t and u relations defined in Figure 6.5 and Figure 6.6 respectively. As section 6.10
shows, these relations define proper join and meet operations. Further, a review of the definitions is enough
to see that if an object is in both t1 and t2, then it is also in t1 u t2.

The function lit type returns a type for a literal. Its details are left unspecified, but lit type must be
compatible with inst literal: the object created by inst literal(lit) must be an element of type lit type(lit).

lookup∗P(type, selector) is the set of methods that may respond if selector is sent to an object of type
type. It is the set containing, for each class class of any object in type, the method lookupP(class, selector).

6.4 Dynamic context
In general, better results can be obtained for the type of a message-send expression if the responding methods
are analyzed multiple times, once for each possible combination of argument types. Such a combination of
argument types form a context. Formally, a context is a function: ctx(act, cfg) is true whenever the context
ctx matches the activation act that is part of configuration cfg.

The largest context used in this paper is >ctx, a context matching any activation. The smallest context is
⊥ctx, a context matching no activation.

The only non-trivial kind of context used in this paper is a parameters context. A parameters context
specifies a block, a type for the method receiver, and a complete function from parameter variables to types.
This function must map a finite number of parameters into types other than>. A parameters context is written
like this:

<: (bs) self : {|SmallInteger|}, anInteger : {|LargePositiveInteger|} :>

This context is for block bs, which must be neither >bs nor ⊥bs. It assigns a type of {|SmallInteger|} to the
method receiver, and it assigns a type of {|LargePositiveInteger|} to the anInteger parameter. It assigns a type
of > to all other parameters.

A parameters context matches an activation in the expected way: the activation must be for a block that is
lexically within the specified block, the activation must have a receiver type that is a member of the specified

6.4. DYNAMIC CONTEXT 71

TO-REFL

t v t

TO-TOP

t v >
TO-BOTTOM

⊥ v t

TO-BLOCK-CTX
ctx1 v ctx2

B{|bs|}ctx1 v B{|bs|}ctx2

TO-BLOCK-CLASS

B{|bs|}ctx v {|Block|}
TO-SELECTOR

S {|s,m|} v {|Selector|}

TO-SUM-R
t′ ∈ ts t v t′

t v Σts

TO-SUM-L
∀t′ ∈ ts : t′ v t

Σts v t

Figure 6.4: Subtyping

TJ-SUB1
t1 v t2

t1 t t2 = t2

TJ-SUB2
t2 v t1

t1 t t2 = t1

TJ-SIMPLES
t1 @ t2 t2 @ t1

t1 is a class, selector, or block type
t2 is a class, selector, or block type

t1 t t2 = Σ{t1, t2}

TJ-MIXED1
t1 is a class, selector, or block type

t2 = Σts t1 @ t2 t2 @ t1
ts′ = remove redundancies(ts ∪ {t1})

t1 t t2 = Σts′

TJ-MIXED2
t2 is a class, selector, or block type

t1 = Σts t1 @ t2 t2 @ t1
ts′ = remove redundancies(ts ∪ {t2})

t1 t t2 = Σts′

TJ-SUMS
t1 = Σts1 t2 = Σts2

ts = remove redundecies(ts1 ∪ ts2) t1 @ t2 t2 @ t1
t1 t t2 = Σts

Figure 6.5: Join for Types

TM-SYM
t1 u t2 = t3
t2 u t1 = t3

TM-SUBTYPE
t1 v t2

t1 u t2 = t1

TM-CLASS
C1 , C2

{|C1|} u {|C2|} = ⊥

TM-CLASS-SELECTOR
C , Selector

{|C|} u S {|s,m|} = ⊥

TM-CLASS-BLOCK
C , Block

{|C|} u B{|bs|}ctx = ⊥

TM-SELECTOR1
s1 , s2

S {|s1,m1|} u S {|s2,m2|} = ⊥

TM-SELECTOR2
m1 , m2

S {|s1,m1|} u S {|s2,m2|} = ⊥
TM-SEL-BLOCK

S {|s,m|} u B{|bs|}ctx = ⊥

TM-BLOCK-DIFF
bs1 , bs2

B{|bs1|}ctx1 u B{|bs2|}ctx2 = ⊥

TM-BLOCK-SAME
ctx1 u ctx2 = ctx

B{|bs|}ctx1 u B{|bs|}ctx2 = B{|bs|}ctx

TM-SUM
∀t′ ∈ ts : t′ u t2 = m(t′)

t3 =
⊔

t′∈ts
m(t′)

Σts u t2 = t3

Figure 6.6: Meet for Types

72 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

type, and each parameter in the activation—including those in lexically nested scopes—must hold an object
that is a member of the type specified by the activation.

Formally, the attributes of a parameters context are ctx.bs, ctx.selftype, and ctx.paramtypes. For shorthand,
however, ctx[self] refers to the type ctx assigns to the receiver. Likewise, ctx[param] refers to the type
assigned to param.

Contexts may be compared to each other using the rules in Figure 6.7. Whenever ctx1 v ctx2, ctx1 matches
a subset of the activations that ctx2 matches. Two contexts may also be combined or intersected, according to
the rules in Figure 6.8 and Figure 6.9. It is proven in section 6.10 that t and u define proper join and meet
operations.

Note that when contexts for unrelated blocks are combined with t, the resulting context is >ctx. It would
be possible to enrich the definition of contexts—by adding “sum contexts” as an analog to sum types—but
since the present analysis never considers such unions, the added complexity would not be helpful. Intersec-
tion via u, on the other hand, does match precisely the contexts matched by both of two contexts that are
intersected.

There are restrictions on the contexts actually used by DDP; see section 6.9 below for details.

6.5 Flow positions
A flow position describes locations that an object might be bound during program execution. It is one of the
following:

1. [: V var :]ctx, a variable flow position, describing the variable var in context ctx. ctx may not be ⊥ctx.

2. [: S meth :]ctx, a self flow position, describing the receiver of the method meth executing in context ctx.
ctx may not be ⊥ctx.

3. [: Σ fs :], where fs is a finite set of flow positions of the above kinds, is a sum flow position. No element
of fs may be subsumed by another. The size of ts must be at least 2.

4. >fp, the universal flow position, which includes all possible flow positions.

5. ⊥fp, the empty flow position, which includes no flow positions.

Some flow positions are completely subsumed by other flow positions. The rules for deciding are given
in Figure 6.10. Further, flow positions may be combined with the rules in Figure 6.11 and Figure 6.12. It is
proven in section 6.10 that t and u define proper join and meet operations for the lattice of flow positions.

An object object is included in a flow position f in configuration cfg, where

cfg = (act, cnt) = stepn(P)

if all of the following are true:

1. For all global variables var that are valid for P,

cnt[GlobalsCID][var.label] = object

⇒ [: V var :]>ctx v f

2. For all valid instance variables var and valid objects object′ whose class is a subclass of var.class,

cnt[object′.ivars cid][var.label] = object

⇒ [: V var :]>ctx v f

6.5. FLOW POSITIONS 73

CO-TOP

ctx v >ctx

CO-BOTTOM

⊥ctx v ctx

CO-PARAMS
ctx1 = <: (bs1) . . . :>

ctx2 = <: (bs2) . . . :> bs1 v bs2 ctx1[self] v ctx2.[self] ∀var : ctx1[var] v ctx2[var]

ctx1 v ctx2

Figure 6.7: Comparison of Contexts

CJ-SYM
ctx2 t ctx1 = ctx3

ctx1 t ctx2 = ctx3

CJ-TOP

ctx t >ctx = >ctx

CJ-BOTTOM

ctx t ⊥ctx = ctx

CJ-DIFF
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> bs1 t bs2 = >bs

ctx1 t ctx2 = >ctx

CJ-PARAMS
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> ctx = <: (bs) . . . :>

bs = bs1 t bs2 bs , >bs

ctx1[self] t ctx2[self] = ctx[self] ∀var : ctx1[var] t ctx2[var] = ctx[var]

ctx1 t ctx2 = ctx

Figure 6.8: Join for Contexts

CM-SYM
ctx2 u ctx1 = ctx3

ctx1 u ctx2 = ctx3

CM-TOP

ctx u >ctx = ctx

CM-BOTTOM

ctx u ⊥ctx = ⊥ctx

CM-DIFF
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :>

bs1 u bs2 = ⊥bs

ctx1 u ctx2 = ⊥ctx

CM-PARAMS
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> ctx = <: (bs) . . . :>

bs1 u bs2 = bs bs , ⊥bs

ctx1[self] u ctx2[self] = ctx[self] ∀var : ctx1[var] u ctx2[var] = ctx[var]

ctx1 u ctx2 = ctx

Figure 6.9: Meet for Contexts

74 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

3. For all act ∈ all activations(cfg), and for all temporary variables var that are defined by act’s block,

cnt[act.temps cid][var.label] = object

⇒ ∃ctx : ctx(act, cfg) ∧ [: V var :]ctx v f

4. For all act ∈ all activations(cfg), and for all parameters var that are defined by act’s block,

cnt[act.params cid][var.label] = object

⇒ ∃ctx : ctx(act, cfg) ∧ [: V var :]ctx v f

5. For all act ∈ all activations(cfg),

act.receiver = object

⇒ ∃ctx : ctx(act, cfg) ∧ [: S act.block.method :]ctx v f

For brevity, flowpos(object, cfg) refers to the least flow position that includes object in cfg. The calculation
of flowpos for a particular object and cfg is straightforward: follow the above definition for an object being
in a flow position, and create a union of precisely the required flow positions and no more.

6.6 Decomposition into simple data-flow structure
Simple data-flow structures are the subset of the data flow structures that do not use set elements. That is, a
simple type is a class type, a block type whose context is a simple context, a selector type, >, or ⊥. A simple
context is a parameters context whose types are all simple, >ctx, or ⊥ctx. A simple flow position is a method
type whose context is simple, a variable type whose context is simple, or >fp or ⊥fp.

Any data-flow structure may be decomposed into a number of simple elements using the cpasplit func-
tion, defined in Figure 6.13. Several properties are proven in section 6.11 to show that cpasplit does behave
like a decomposition.

Decomposition is useful in DDP itself to subdivide the analysis of a general data-flow goal into a number
of smaller goals. If future information requires that the original goal addresses a more general question, then
the subgoals that have already been created are still useful, thus avoiding potentially wasted work. This form
and this application of decomposition both follow Agesen, who describes the idea as follows [3]:

The cartesian product algorithm (CPA for short) differs fundamentally. It does not partition
sends, but instead turns the analysis of each send into a case analysis. To analyze a send, CPA
computes the cartesian product of the types of the actual arguments. Each tuple in the cartesian
product is analyzed as an independent case. This case analysis makes exact type information
immediately available for each case, thus eliminating the need for iteration. In turn, the type
information is used to ensure both precision (by avoiding type merges) and efficiency (by sharing
cases to avoid redundant analysis). [. . .]

The idea behind CPA is best understood by going back to the analogy between program exe-
cution and program analysis. During program execution, activation records are always created
”monomorphically,” simply because each slot contains a single object. Consider, for example, a
polymorphic send expression that invokes the max: method with integer or float receivers. This
means that sometimes the send invokes max: with an integer receiver, and other times it invokes
it with a float receiver. But in any particular invocation the receiver is either an integer or a float:
it cannot be both. We summarize this observation as follows:

There is no such thing as a polymorphic message, only polymorphic send expressions.

6.6. DECOMPOSITION INTO SIMPLE DATA-FLOW STRUCTURE 75

FO-TOP

f v >fp

FO-BOTTOM

⊥fp v f

FO-VAR
ctx v ctx′

[: V var :]ctx v [: V var :]ctx′

FO-METH
ctx v ctx′

[: S meth :]ctx v [: S meth :]ctx′

FO-SUM-L
∀ f ∈ fs : f v f ′

[: Σ fs :] v f ′

FO-SUM-R
∃ f ′ ∈ fs′ : f v f ′

f v [: Σ fs′ :]

Figure 6.10: Comparison of Flow Positions

f1 v f2
f1 t f2 = f2

f2 v f1
f1 t f2 = f1

f1 @ f2 f2 @ f1
f1 is a variable or self flow position
f2 is a variable or self flow position

f1 t f2 = [: Σ { f1, f2} :]

f1 @ f2 f2 @ f1
f1 is a variable or self flow position

f2 = [: Σ fs2 :]
fs = remove redundecies({ f1} ∪ fs2)

f1 t f2 = [: Σ fs :]

f1 @ f2 f2 @ f1
f2 is a variable or self flow position

f1 = [: Σ fs1 :]
fs = remove redundecies({ f2} ∪ fs1)

f1 t f2 = [: Σ fs :]

f1 = [: Σ fs1 :] f2 = [: Σ fs2 :]
fs = remove redundecies(fs1 ∪ fs2)

f1 t f2 = [: Σ fs :]

Figure 6.11: Join for Flow Positions

76 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

In addition to providing the groundwork for CPA context sensitivity, decomposition into simple data-flow
objects is useful in the supporting theory.

6.7 Judgements
A data-flow algorithm processes judgements about the behavior of a program. This section describes the
kinds of judgements that DDP processes.

6.7.1 Type judgements
A type judgement has the form var :ctx type. If ctx specifies a block, that block must enclose the declaration
of var. For example, if var is a global variable, then ctx may not specify a block and must be >ctx. Similarly,
a context may only assign a type to the receiver if the variable is a parameter or a local variable; intuitively,
there would otherwise there be no single self in scope.

The correctness criterion for type judgements is straightforward. A type judgement var :ctx type is correct
for configuration cfg if:

∀ act ∈ all activations(cfg) :
ctx(act, cfg) ∧ var = dynlookup varP(cfg, act, var.label)
⇒ read var(cfg, act, var.label) ∈ type

That is, for every activation matched by ctx and in which var may be read at all, reading the specified variable
gives an object included in type.

6.7.2 Simple flow judgements
A simple flow judgement f → f ′ declares that objects in flow position f may only directly flow to flow
position f ′. By definition, f may be any kind of flow position, but in DDP actually only processes flow
judgements where f is a simple flow position.

No rigorous meaning is given to the correctness of an individual flow judgement, but the intuition is that
f → f ′ means that f ′ holds all of the possible positions to which a value can directly flow if it starts in
position f . The rigorous definition of correctness compares the flow position of an object to its flow position
after one step of execution. Since a simple flow position cannot, in general, capture the entire flow position
of an object at one configuration, DDP uses sets of flow judgements to capture all of the possible flow from
one configuration to the next.

A set of simple flow judgements F is correct for configuration cfg precisely when:

∀object , NilObj : ∀G ⊆ F :
⊥fp @ flowpos(object, cfg) v lhs(G)
⇒ flowpos(object, stepP(cfg)) v (lhs(G) t rhs(G))

where:
lhs(G) =

⊔

f→f ′∈G
f

and:
rhs(G) =

⊔

f→f ′∈G
f ′

A set of flow judgements is correct for program P, without the qualification, if it is correct in stepn(P)
for all n.

6.7. JUDGEMENTS 77

6.7.3 Transitive flow judgements
A transitive flow judgement f →∗ f ′ makes a stronger claim than a simple flow judgement: it claims that
objects in flow position f may only flow to flow position f ′, even across an arbitrary number of step’s. A
simple flow judgement makes a claim about one step of execution, while a transitive flow judgement makes
a claim about an arbitrary number of steps of execution.

Formally, a set of transitive flow judgementsF is correct for configurations cfg, stepP(cfg), . . . , stepn
P(cfg)

whenever:

∀object , NilObj : ∀i ∈ 0 . . . n : ∀ j ∈ i . . . n : ∀G ⊆ F :
⊥fp @ flowpos(object, stepi

P(cfg)) v lhs(G)

⇒ flowpos(object, step j
P(cfg)) v rhs(G)

A set of transitive flow judgements is correct for program P if it is correct for the configurations step0(P),
. . . , stepn(P) regardless of n.

6.7.4 Responders judgements
A responders judgement is one kind of judgement about the call graph. Roughly, it asks “what is invoked by
a particular send statement?”. It has the following form:

statctx ? b
send−−−→ rs

The stat parameter must be a send, sendvar, or beval statement. b is a binding map for that statement,
and ctx is a dynamic context. The parameter rs is typically a finite set of tuples (bs, bctx), each of which has
a block specification and a context. rs may also be >r, which signifies that any method or block might be
invoked.

The above judgement is correct for configuration stepn(P) if one of the following is true:

1. rs is >r.

2. stat is not the statement about to execute in stepn(P).

3. b[block] is not the block of the main activation of stepn(P).

4. ctx does not match the main activation of stepn(P).

5. There is a tuple (bs, bctx) ∈ rs such that the main activation in stepn+1(P) has a block of bs and matches
context bctx.

6.7.5 Senders judgements
A senders judgement is a different form of judgement about the call graph. It asks, roughly, “what statements
invoke this block”. It has the following form:

bsctx
send←−−− ss

bs is the specification of a block or method and ctx is a context that filters execution states for the responding
block. The presence of ctx thus allows more specific judgements about the calling context; it allows the
analyzer to limit attention to the invokers of some block under the assumption that the execution state resulting
from the block invocation matches the specified context.

The senders set in a senders judgement, ss in the example above, is typically a set of tuples (stat, b, cctx),
each of which specifies a statement with bindings and a context, but ss may also be the distinguished value
>s. If ss = >s, the judgement declares that any statement might invoke bs.

The above judgement is correct for configuration stepn(P) if one of the following is true:

78 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

1. ss is >s.

2. The next statement to execute in stepn(P) was not a send, sendvar, or beval statement.

3. The main activation of stepn+1(P) is for a block other than bs. In this case the senders judgement makes
no claim.

4. There is a tuple (stat, b, cctx) such that cctx matches the main activation of stepn(P), the binding map
of that activation is b, and the statement about to execute in that activation is stat. In this case, the
sender is among the possibilities the judgement allows.

Lemma 6.2 (Senders Judgements Across Multiple Steps). Suppose that bsctx
send←−−− ss is correct for config-

urations step0(P) . . . stepn(P). Then, for any activation act ∈ all activations(stepn+1(P)) whose block is bs,
that is matched by ctx, and whose caller is not undef, there must be an m ≤ n such that stepm(P) matches
the last criterion of correctness for senders judgements. That is, there is a tuple (stat, b, cctx) such that cctx
matches the main activation of stepm(P), the binding map of that activation is b, and the statement about to
execute in that activation is stat.

Proof. Disregarding changes to pc’s, there is at most one new activation in each configuration that was not
present in the previous configuration. Further, if there is a new activation at all, then the new activation must
be the main activation. Therefore, every act ∈ all activations(stepn+1(P)) must be the main activation of
stepk(P) for some k ≤ n + 1. Further, since by assumption caller , undef, act cannot be the initial activation
created for step0(P) and thus k > 0. Choose m = k − 1. Since this m ≤ n, the senders judgement is true
for stepm(P), and thus the final clause of the correctness criteria for senders judgement gives the desired
property. �

6.8 Goals
There is one kind of goal for each kind of judgement described above. Each goal is a judgement that has had
one portion removed:

• A type goal v :c? tries to find a type t such that v :c t is correct.

• A flow goal f →? tries to find a flow position f ′ such that f → f ′ is correct.

• A transitive flow goal f →∗? tries to find a flow position f ′ such that f →∗ f ′ is correct.

• A responders goal statctx ? b
send−−−→ ? tries to find a responders set rs such that statctx ? b

send−−−→ rs is
correct.

• A senders goal bctx
send←−−− ? tries to find a senders set ss such that bctx

send←−−− ss is correct.

Every goal that DDP pursues is of one of the above five forms.

6.9 Restrictions
Not all elements of the above domains (types, contexts, etc.) are valid for use by DDP. There are some
restrictions, both to ensure that valid elements have a meaningful interpretation, and to keep all of the domains
finite. Some of the restrictions depend on the particular program P being analyzed.

Contexts have the bulk of the restrictions. To be consistent with the program, a context must only specify
non-> types for parameters that are visible inside the context’s block:

ctx[var] , > ⇒ var ∈ static bindingsP(ctx.bs)

Further, not all contexts are usable for all purposes; there are additional restrictions as follow:

6.10. PROOFS THAT THE DDP DOMAINS ARE LATTICES 79

• For a type judgement var :ctx type, either ctx must be >ctx, or it must specify a block surrounding the
one where var is declared. For a global variable or instance variable, there is no such block and thus
the context must be >ctx. For a block parameter or local variable, the context may specify the block
where the variable is declared, or it may specify a block enclosing that block.

• A variable flow position [: V var :]ctx has exactly the same restrictions.

• For a self flow position [: S meth :]ctx, either ctx must be >ctx, or it must specify the main block of
meth.

• For a block type B{|blk|}ctx, either ctx must be >ctx, or it must specify a block that is blk itself or a block
that surrounds blk.

• The context for a responders judgement is either >ctx, or it specifies a block that is the block of the
binding map of the judgement or that lexically encloses that block.

• The context in a senders judgement is either >ctx, or it specifies a block that is the block of the judge-
ment or that lexically encloses that block.

If a context is invalid according to either of the criteria above, then it can be broadened until it meets the
necessary restrictions. The notation dctxe denotes a context that is less restrictive than ctx and that is valid for
the intended purpose. In short, it is the smallest context ctx′ such that ctx′ is valid and ctx v ctx′.

In detail, dctxe is computed as follows. First, if ctx is >ctx or ⊥ctx, then dctxe = ctx. Otherwise, the
block specification of dctxe is the innermost block specification encompassing the block of ctx that meets the
restrictions on block context; if there is no such block specification then dctxe = >ctx. The non-> parameter
restrictions of dctxe are precisely those of ctx where the variable is visible from the chosen block specification.

As another restriction, only classes, variables, methods, etc. in the program may be specified in the above
domains. For example, in a type judgement v :c t, the variable v must be a variable in P.

Finally, the recursion between block types and contexts must be restricted in some way in order to ensure
that a finite number of block types are possible. There are various approaches possible, as Agesen has studied
[2]. The present work uses a simple approach, because it is expected that precise analysis of blocks that access
themselves via parameters is not frequently needed for precise analysis of Smalltalk code. The approach used
is as follows: the context associated with a block may not mention, either directly or indirectly, another block
type for the same block. That is, while the context may mention a block type for a different block, the context
for that block type may not mention a block type for either of the two blocks. And so on, recursively. Since
there are only finitely many blocks available in a particular program, there are only a finite number of possible
block types that meet this restriction. The notation dblkte refers to the block type blkt after having enough
contexts replaced by >ctx that the block type is valid.

6.10 Proofs that the DDP domains are lattices
This section proves that block specifications, types, contexts, and flow positions all form lattices with their
respective v operators, and that the respective t and u relations defined earlier are correct join and meet
operations for these lattices. The theorem and proof are given first, so that the reader can see how the lemmas
support it.

Theorem 2 (DDP’s data-flow domains are lattices). Block specifications, types, contexts, and flow positions,
along with their respective v relations, are lattices. Further, the respective t and u operations defined in this
chapter are these lattices’ join and meet operations.

Proof. The following lemmas establish that each v relation is a true partial order: each is reflexive, anti-
symetric, and transitive. Further, the following lemmas show that each t and u relation provides least upper
bounds (LUB’s) and greatest lower bounds (GLB’s). Inspection of the definitions of these relations are

80 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

complete. Thus, not only does each data-flow domain have LUB’s and GLB’s, but the specified t and u
relations provide them. Since LUB’s and GLB’s are unique, the defined t and u relations are operations. �

Lemma 6.3 (Comparison of Block Specifications is Reflexive). For any block specification bs, bs v bs.

Proof. Straightforward case analysis of bs gives the desired property. �

Lemma 6.4 (Comparison of Block Specifications is Transitive). For any block specifications bs1, bs1, and
bs1, where bs1 v bs2 and bs2 v bs3, bs1 v bs3.

Proof. The only non-trivial case is when none of bs1, bs2, and bs3 are either >bs or ⊥bs. Let:

bs1 = (ms1, l1)
bs2 = (ms2, l2)
bs3 = (ms3, l3)

Rule BSO-NESTED must have been used, so that all of:

ms1 = ms2

l1 = l2@l′

ms2 = ms3

l2 = l3@l′′

for some l′ and l′′. It is thus clear that ms1 = ms3 and that l1 = l3@(l′@l′′), and thus bs1 v bs3. �

Lemma 6.5 (Comparison of Block Specifications is Antisymmetric). For any block specifications bs1 and
bs2, if bs1 v bs2 and bs2 v bs1 , then bs1 = bs2.

Proof. The proof is a case analysis of bs1. If bs1 is >bs, then BSO-TOP must have been used to justify
bs1 v bs2, and thus bs2 is >bs. Likewise for the case where bs1 is ⊥bs.

If bs1 = (ms, l), then BSO-NESTED must have been used to justify bs1 v bs2 and bs2 v bs1. The only
way this can be is if bs2 = (ms, l@l′) where l′ = []. Thus bs1 = bs2. �

Lemma 6.6 (Join of Block Specifications is Complete). For any block specifications bs1 and bs2, there is a
bst such that bs1 t bs2 = bst.

Proof. The proof is by cases. If bs1 or bs2 is >bs, then one may choose bst = >bs. Similarly, if bs1 = ⊥bs

then one may choose bst = bs2, and if bs2 = ⊥bs then one may choose bst = bs1. That leaves the case
that neither bs1 nor bs2 is >bs or ⊥bs. In that case, one must consider whether the methods of the two block
specifications are the same. If they are the same, then BSJ SAMEMETH may be used to find a satisfactory
bst, and if they are different then one may choose >bs. �

Lemma 6.7 (Meet of Block Specifications is Complete). For any block specifications bs1 and bs2, there is a
bsu such that bs1 u bs2 = bst.

Proof. The proof is by cases, just as with the proof that t is complete. �

Lemma 6.8 (Join of Block Specifications is Correct). If bs1 t bs2 = bst, then bst is the least upper bound
of bs1 and bs2. That is, bs1 v bst and bs2 v bst, and for any other bs3 for which bs1 v bs3 and bs2 v bs3, it
must be that bst v bs3.

6.10. PROOFS THAT THE DDP DOMAINS ARE LATTICES 81

Proof. To show the first part of the lemma, that bst is an upper bound of bs1 and bs2, induct on the derivation
that bs1 t bs2 = bs3 and note that, in each case, one of the ordering rules will clearly apply.

To show that bst is also the least upper bound of bs1 and bs2, induct on the derivation that bs1tbs2 = bs3

and consider any other upper bound bs3. It must be shown that bst v bs3. The only non-trivial case is if the
derivation finishes with BSJ-SAMEMETH. In that case, let:

bs1 = (ms, l1)
bs2 = (ms, l2)
bst = (ms, lt)

lt = longest prefix(l1, l2)

If bs3 = >bs then the result is trivial, and if bs3 = ⊥bs then there is a contradiction because bs3 cannot be an
upper bound of bs1 or bs2. Suppose, then, that:

bs3 = (ms, l3)

The justification that bs1 v bs3 must use BSO-NESTED, and thus l1 = l3@l′ for some l′. Likewise, l2 =

l3@l′′ for some l′′. Thus, l3 is a prefix of both l1 and l2, and thus also a prefix of lt, which is the longest
common prefix of l1 and l2. Thus by BSO-NESTED, bst v bs3. �

Lemma 6.9 (Meet of Block Specifications is Correct). When bs1ubs2 = bsu, bsu is the greatest lower bound
of bs1 and bs2. That is, bsu v bs1 and bsu v bs2, and for any other bs3 for which bs3 v bs1 and bs3 v bs2, it
must be that bs3 v bsu.

Proof. It is straightforward to show the first part of the lemma, that bsu v bs1 and bsu v bs2. Simply induct
on the derivation that bs1 u bs2 = bsu.

To show the second part, induct on the derivation that bs1 u bs2 = bsu, and let bs3 be such that bs3 v bs1

and bs3 v bs2. It must be shown that bs3 v bsu. Consider each possible last step of the derivation that
bs1 u bs2 = bsu:

• BSM-SYM. By the inductive assumption, bs3 v bsu.

• BSM-TOP. By BSO-TOP, bs3 v bsu = >bs.

• BSM-BOTTOM. Since bs3 v bs2 = ⊥bs, it must be that bs3 = ⊥bs. By BSO-BOTTOM, bs3 v bsu.

• BSM-DIFFMETH. Let bs1 = (ms1, l1) and bs1 = (ms2, l2). If bs3 = ⊥bs then the proof is trivial, and
if bs3 = >bs then it cannot be that bs3 v bs1. Thus suppose bs3 = (ms3, l3). To justify that bs3 v bs1,
rule BSO-NESTED must be used, and thus ms3 = ms1. The same argument applies with bs2, however,
and thus also ms3 = ms2. This contradicts the assumption of BSM-DIFFMETH, and thus the case is
impossible.

• BSM-DIFFBLOCK. Again, the only non-trivial case is if bs3 = (ms3, l3) for some ms3 and l3. Let:

bs1 = (ms, l@[a]@l1)
bs2 = (ms, l@[b]@l2)

a , b

Rule BSO-NESTED must be used to justify both bs3 v bs1 and bs3 v bs2, and thus ms3 = ms. Further,
it must be that both:

l3 = l@[a]@l1@l′

l3 = l@[b]@l2@l′

82 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

However, this is clearly impossible.

• BSM-NESTED. Again, the only non-trivial case is if bs3 = (ms3, l3) for some ms3 and l3. Let:

bs1 = (ms, l)
bs2 = (ms, l@l′)
bsu = (ms, l@l′)

Rule BSO-NESTED must be used to justify bs3 v bs1 and bs3 v bs2, and thus ms3 = ms. Further,
l3 = l@l′@l′′. Thus, by Rule BSM-NESTED, bs3 v bsu.

�

Lemma 6.10 (Reflexive Property for Comparison of Types). For any type t, t v t.

Proof. Justification rule TO-REFL gives this property directly. �

Lemma 6.11 (Comparison of Contexts is Reflexive). For any context ctx, it must be that ctx v ctx.

Proof. If ctx = >ctx, then CO-TOP gives this property. Likewise, if ctx = ⊥ctx, then CO-BOTTOM gives the
property. If ctx is a parameters context, then CO-PARAMS gives the desired property. �

Lemma 6.12 (Comparison of Types and Contexts is Transitive). For any types t1, t2, and t3, where t1 v t2,
and t2 v t3, it must be that t1 v t3. For any contexts ctx1, ctx2, and ctx3, where ctx1 v ctx2 and ctx2 v ctx3, it
must be that ctx1 v ctx3.

Proof. The proof is by induction on the depth of the deepest justification that t1 v t2, t2 v t3, ctx1 v ctx2, or
ctx2 v ctx3.

First, consider the transitivity of types. One of the following rules must be used to justify that t1 v t2:

• TO-REFL. Then t1 = t2. Since, by assumption, t2 v t3, it must also be that t1 v t3.

• TO-TOP. Then t2 = >. It must also be that t3 = >, because otherwise it is not possible for t2 v t3. By
TO-TOP again, t1 v t3.

• TO-BOTTOM. Then t1 = ⊥. By TO-BOTTOM again, t1 v t3 regardless of what t3 is.

• TO-BLOCK-CTX. Then t1 = B{|bs|}ctx1 and t2 = B{|bs|}ctx2 , where ctx1 v ctx2. Now consider each way
that it might have been justified that t2 v t3:

– TO-TOP. Then t3 = >, and by TO-TOP, t1 v t3.

– TO-BLOCK-CTX. Then t3 = B{|bs|}ctx3 where ctx2 v ctx3. The derivations that ctx1 v ctx2 and
that ctx2 v ctx3 must be less deep than the derivations that t1 v t2 and that t2 v t3. Thus the
inductive assumption may be used, and ctx1 v ctx3. Thus by TO-BLOCK-CTX, t1 v t3.

– TO-BLOCK-CLASS. Then TO-BLOCK-CLASS also justifies t1 v t3.

– TO-SUM-R. Then t3 is a sum type that has a t′ among its elements such that t2 v t′. By the
inductive assumption, it is also true that t1 v t′. Thus by TO-SUM-R, t1 v t3.

• TO-BLOCK-CLASS. t1 is a block type and t2 is the class type for class Block. Consider each way to
justify t2 v t3:

– TO-REFL. Then t3 is also the class type for Block and the desired result is given by TO-BLOCK-CLASS.

– TO-TOP. Then t3 = >, and TO-TOP gives the desired result.

– TO-SUM-R. Then the inductive assumption gives the desired result.

6.10. PROOFS THAT THE DDP DOMAINS ARE LATTICES 83

• TO-SELECTOR. The proof parallels the one for TO-BLOCK-CLASS.

• TO-SUM-R. t2 is a sum type, and there is some element t′ of the sum for which t1 v t′. Consider each
way that it may have been justified that t2 v t3:

– TO-REFL. Trivial.

– TO-TOP. Trivial.

– TO-SUM-R. Then t3 is a sum type with an element t′′ such that t2 v t′′. To justify that t2 v t′′, one
must use TO-SUM-L. Thus, all elements of t2 are subtypes of t′′, including t′. By the inductive
assumption, t1 v t′′, and thus by TO-SUM-R, t1 v t3.

– TO-SUM-L. All elements of t2 are subtypes of t3, including t′. By the inductive assumption,
t1 v t3.

• TO-SUM-L. t1 is a sum type, and every element of the sum is a subtype of t2. Each element of t1 cannot
be a sum type, and so the justification that each element is a subtype of t2 cannot use TO-SUM-L and
must instead use one of the above rules. No matter which rule is used, the argument from above may be
repeated to show that the element is also a subtype of t3. Thus the condition is met to use TO-SUM-L
to justify t1 v t3.

Now consider transitivity of contexts. One of the following rules must be used to justify that ctx1 v ctx2:

• CO-TOP. Then ctx2 = >ctx. It most also be that ctx3 = >ctx, and thus clearly ctx1 v ctx3.

• CO-BOTTOM. Then ctx1 = ⊥ctx. Then by CO-BOTTOM, ctx1 v ctx3.

• CO-PARAMS. Then ctx1 and ctx2 are parameters contexts where the types of ctx1 are subtypes of
the corresponding types of ctx2. If one justifies ctx2 v ctx3 with CO-TOP then the result is trivial, so
suppose one uses CO-PARAMS. Then the types of ctx2 are subtypes of the corresponding types of
ctx3. By the inductive assumption, the types of ctx1 are also less than the corresponding types of ctx3,
and thus CO-PARAMS justifies that ctx1 v ctx3.

�

Lemma 6.13 (Comparison of Types and Contexts is Antisymmetric). Let t1 and t2 be any types, and ctx1 and
ctx2 be any contexts. If t1 v t2 and t2 v t1 then t1 = t2. If ctx1 v ctx2 and ctx2 v ctx1 then ctx1 = ctx2 .

Proof. The proof is by induction on the depth of the deepest inference tree used to infer that t1 v t2, t2 v t1,
ctx1 v ctx2, or ctx2 v ctx1.

First consider anti-symmetry of comparison of types. Consider in turn each way that one might justify
t1 v t2:

• TO-REFL. It must be that t1 = t2 in order to use this rule at all.

• TO-TOP. Thus t2 = >. The only ways to justify that > v t1 are TO-REFL, TO-TOP, and TO-SUM-R.
If TO-REFL or TO-TOP is used the result is trivial. TO-SUM-R cannot in fact be used because the
assumptions cannot be met: There is no way for the sum to include a type that is a supertype of >.

• TO-BOTTOM. Likewise.

• TO-BLOCK-CTX. It must be that t1 = B{|bs|}bctx1 and t2 = B{|bs|}bctx2 for some bs, bctx1, and bctx2. To
justify that t2 v t1, either TO-REFL is used, or TO-BLOCK-CTX is used again. If TO-REFL is used
then the result is trivial. If TO-BLOCK-CTX is used, then it must be that both bctx1 v bctx2 and
bctx2 v bctx1. By the inductive hypothesis, bctx1 = bctx2 and thus also t1 = t2.

• TO-BLOCK-CLASS. In this case, there is no rule that can justify t2 v t1.

84 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

• TO-SELECTOR. Likewise.

• TO-SUM-R. It must be that t2 = Σts2 and that there is a t′2 ∈ ts2 such that t1 v t′2. To justify t2 v t1, one
of these rules must be used: TO-REFL, TO-TOP, TO-SUM-R, or TO-SUM-L. TO-REFL is trivial, and,
as described above, TO-TOP is impossible. In fact, as described below, TO-SUM-L and TO-SUM-R
are impossible as well.

If TO-SUM-R is used, then t1 = Σts1 and there is a t′1 ∈ ts1 such that t2 v t′1. The only way to justify
t2 v t′1 is with TO-SUM-L, which means that every element of ts2, including t′2, is a subtype of t′1. By
the inductive hypothesis, t′1 = t′2, and thus every element of ts2 is also a subtype of t′2. But then t2 is a
malformed sum type.

If TO-SUM-L is used, then every element of ts2 is a subtype of t1. By the transitivity property, every
element of ts2 must also be a subtype of t′2. But then t2 is, again, a malformed sum type.

• TO-SUM-L. It must be that t1 = Σts1 and that all elements of ts1 are subtypes of t2. To justify that
t2 v t1, one of these rules must be used: TO-REFL, TO-BOTTOM, TO-SUM-R, or TO-SUM-L.
TO-REFL is trivial. TO-BOTTOM is actually impossible because no sum type can be a subtype of ⊥.
TO-SUM-R is symmetric to a case already discussed.

That leaves TO-SUM-L to justify t2 v t1. It must be that t2 = Σts2 and every element of ts2 is a subtype
of t1. To justify that each of these elements is a subtype of t1, TO-SUM-R must be used. Thus for
each element of ts2, there must be an element of ts1 that it is a subtype of. Similarly, there must be an
element of ts1 that is the supertype of each element of ts2. Consider any element t1a ∈ ts1, an element
t2a ∈ ts2 such that t1a v t2a, and an element t1b ∈ ts1 such that t2a v t1b. By transitivity, t1a v t1b. Since
t1 is a well-formed sum type, it must be that t1a = t1b. By the inductive hypothesis, it must be that
t1a = t2a. Since this argument holds for all elements of ts1 and ts2, it must be that each element of each
set has an equal element in the other set, and thus the two sets must be equal. Thus t1 = t2 as well.

Now consider comparision of contexts. Consider in turn each rule that can justify ctx1 v ctx2:

• CO-TOP. Then ctx2 = >ctx. Since ctx2 v ctx1, it must also be that ctx2 = >ctx; no other type can be
v >ctx. Thus ctx1 = ctx2.

• CO-BOTTOM. Likewise, ctx1 = ⊥ctx, and ctx2 = ⊥ctx as well.

• CO-PARAMS. In this case, ctx1 and ctx2 must both be parameters contexts. Thus, CO-PARAMS must
also have been used to justify ctx2 v ctx1. Since block-specification comparison is anti-symmetric, this
implies that the block specification of ctx1 is the same as that of ctx2. Likewise, since type comparison
is anti-symmetric, all of the types in ctx1 must equal the correspending types in ctx2. Therefore, all of
the components of ctx1 equal the correspending components of ctx2, and ctx1 = ctx2.

�

Lemma 6.14 (Join of Types is Complete). For any types t1 and t2, there is a type tt such that t1 t t2 = tt.

Proof. The proof is straightforward by cases. Either one type is a subtype of the other, or if not, each type is
or is not a sum type. �

Lemma 6.15 (Join of Contexts is Complete). For any contexts ctx1 and ctx2, there is a context ctxt such that
ctx1 t ctx2 = ctxt.

Proof. The proof by cases is straightforward. �

Lemma 6.16 (Meet of Types and Contexts is Complete). For any types t1 and t2, there is a type tt such that
t1 u t2 = tt. For any contexts ctx1 and ctx2, there is a context ctxt such that ctx1 u ctx2 = ctxt.

6.10. PROOFS THAT THE DDP DOMAINS ARE LATTICES 85

Proof. The proof is by induction on the construction of t1 and t2 or ctx1 and ctx2. Each type is >, ⊥, a class
type, a selector type, a block type, or a sum type. In each case, either one type is a subtype of the other, or
one of the rules must apply. Note that if t1 and t2 are blocks, then it will be possible to satisfy the assumption
in TM-BLOCK-SAME due to the inductive assumption. Likewise for TM-SUM. Similarly, each context is
>ctx, ⊥ctx, or a parameters context. Likewise, note that the assumptions in CM-PARAMS are satisfiable due
to the inductive assumption. �

Lemma 6.17 (Join of Types is Correct). If t1 t t2 = tt, tt is the least upper bound of t1 and t2 in the types
lattice. That is, t1 v tt, t2 v tt, and for any t′t such that t1 v t′t and t2 v t′t, tt v t′t.

Proof. To show that t1 v tt and t2 v tt, one can do a straightforward case analysis on the derivation of
t1 t t2 = tt. Thus t gives upper bounds.

To show that tt is the least upper bound, let t′t be any other upper bound, and consider each way that it
may be derived that t1 t t2 = tt.

• TJ-SUB1 and TJ-SUB2. Trivial.

• TJ-SIMPLES. By TO-SUM-L, it must be that tt v t′t; the two elements of tt are t1 and t2 which are
assumed to be subtypes of t′t.

• TJ-MIXED1. t2 and tt must be sum types, and every component type of tt must also be a component
of t2 or must be exactly t1. Each of these types must be a subtype of t′t, and thus again TO-SUM-L
shows that tt v t′t.

• TJ-MIXED2. Likewise.

• TJ-SUMS. t1, t2, and tt are all sum types, and every component of tt is a component of either t1 or t2.
Thus TO-SUM-L again shows that tt v t′t.

Lemma 6.18 (Join of Contexts is Correct). For any three contexts ctx1, ctx2, and ctxt, where ctx1 t ctx2 =

ctxt, ctxt is the least upper bound of ctx1 and ctx2.

First show that ctxt is an upper bound, induct on the derivation of ctx1 t ctx2 = ctxt, and observe that in
each possible case, one of the ordering rules will apply.

To show that ctxt is not only an upper bound, but the least upper bound, induct again on the derivation
of ctx1 t ctx2 = ctxt, consider each possible rule that might be used in the final step of the derivation, and
consider any other upper bound ctx′t. It must be shown that ctxt v ctx′t.

• CJ-SYM. The inductive assumption directly gives the desired result.

• CJ-TOP. Every context is ordered before >ctx.

• CJ-BOTTOM. ctx′t can only be ⊥ctx; otherwise there is no way to justify ordering it before ⊥ctx. Thus
by CO-BOTTOM, ctxt v ctx′t.

• CJ-DIFF. If ctx′t is >ctx, then the proof is trivial. It cannot be ⊥ctx. If ctx′t is a parameters context, then
a contradiction arises, as follows. The block specification of ctx′t must be ordered after both the block
specification of ctx1 and the block specification of ctx2. Since the join operation for block specifications
gives least upper bounds, the only context this could be is >ctx. However, the block specification of a
parameters context can not be >ctx.

86 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

• CJ-PARAMS. If ctx′u is >ctx, then the proof is trivial. Further, ctx′u cannot be ⊥ctx. The only remaining
case is that ctx′u = <: (bs3) . . . :>. It must be that all of:

bs1 v bs3

bs2 v bs3

ctx1[self] v ctxt[self]
ctx2[self] v ctxt[self]

∀var : ctx1[var] v ctx′t[var]
∀var : ctx2[var] v ctx′t[var]

Since meet is correct for block specifications, bs1 t bs2 v bs3. By the inductive assumption, both:

ctx1[self] t ctx2[self] v ctx′t[self]
∀var : ctx1[var] t ctx2[var] v ctx′t[var]

Thus all of the conditions are met to use rule CO-PARAMS, and ctxt v ctx′t.

�

Lemma 6.19 (Meet of Types and Contexts is Correct). For any types t1, t2, and tu, where t1 u t2 = tu, tu is
the greatest lower bound of t1 and t2 in the types lattice. That is, tu v t1, tu v t2, and for any t′u such that
t′u v t1 and t′u v t2, t′u v tu. Further, for any contexts ctx1, ctx2, and ctxu where ctx1 u ctx2 = ctxu, ctxu is the
least upper bound of ctx1 and ctx2.

Proof. First show that tu and ctxu are lower bounds. It suffices to perform a straightforward induction on the
derivation of t1 u t2 = tu or ctx1 u ctx2 = ctxu. The only non-trivial case is TM-SUM. One can show, by a
tedious case analysis, that whenever two types are a subtype of a third type, their union is also a subtype of
the third type. By extension, if any finite number of types is a subtype of t, then so is their union.

Thus u gives lower bounds.
To show that tu and ctxu are greatest lower bounds, let t′u and ctx′u be any other lower bounds. It must be

shown that t′u v tu and that ctx′u v ctxu.
First, consider each way that it may be derived that t1 u t2 = tu.

• TM-SYM. The inductive assumption gives the desired result.

• TM-SUBTYPE. Since t′u is a lower bound, it must be that t′u v t1 = tu.

• TM-CLASS. A case analysis on the different kinds of types shows that t′u = ⊥. Since this argument is
used repeatedly, this simple case analysis will be listed in full:

– If t′u is >, then there is a contradiction: there is no way to justify t′u v t1.

– If t′u is a class type, then it must be a class type for the same class as t1 and for the same class as
t2. However, by an assumption of TM-CLASS, these classes are different.

– If t′u is a selector type, then the class of t1 and the class of t2 must be Selector. However, these
classes cannot be the same.

– If t′u is a block type, then likewise for class Block.

– If t′u is a sum type, then all of its elements must be subtypes of t1 and t2. However, its elements
must be class, selector, or block types, and as argued above there are no such types available that
are subtypes of both t1 and t2.

6.10. PROOFS THAT THE DDP DOMAINS ARE LATTICES 87

Since t′u = ⊥ = tu, t′u v tu.

• TM-CLASS-SELECTOR. Likewise.

• TM-CLASS-BLOCK. Likewise.

• TM-SELECTOR1. Likewise.

• TM-SELECTOR2. Likewise.

• TM-SEL-BLOCK. Likewise.

• TM-BLOCK-DIFF. Likewise.

• TM-BLOCK-SAME. If t′u = ⊥, then the desired result is clear. Otherwise, t′u must be a block type. Its
block specification must be the same as that for t1 and t2, and its context must be subsumed by both the
context of t1 and the context of t2. By the inductive assumption, any such context must be subsumed
by the meet of these two contexts, and the context of tu is in fact the meet of these two contexts. Thus,
by TO-BLOCK, t′u v tu.

• TM-SUM. t1 = Σts. Since t′u v t1, there must be some element t′ ∈ ts such that t′u v t′. By the
inductive assumption, t′u v t′ u t2. Since tu is the join of t′ u t2 with some other types, and, since joins
give upper bounds, it must also be that t′u v tu.

Now consider each way to derive ctx1 u ctx2 = ctxu.

• CM-SYM. By the inductive assumption, ctx′u v ctxu.

• CM-TOP. Then ctx2 = >ctx and ctxu = ctx1. By assumption, ctx′u v ctx1 = ctxu.

• CM-BOTTOM. It must be that ctx′u = ⊥ctx. Thus by CO-BOTTOM, ctx′u v ctxu.

• CM-DIFF. If ctx′u is ⊥ctx, then the proof is trivial, and ctx′u cannot be >ctx. If it is a parameters context,
a contradiction arises. Its block specification must be a subtype of the block specifications of ctx1 and
ctx2, and its block specification must not be ⊥bs. By the inductive assumption, however, and since meet
for block specifications gives the greatest lower bound, its block specification can only be ⊥bs.

• CM-PARAMS. If ctx′u is ⊥ctx, then the proof is trivial, and it cannot be >ctx. Thus, suppose ctx′u =

<: (bs3) . . . :>. It must be that all of:

bs3 v bs1

bs3 v bs2

ctx′u[self] v ctx1[self]
ctx′u[self] v ctx2[self]

∀var : ctx′u[var] v ctx1[var]
∀var : ctx′u[var] v ctx2[var]

Since meet is correct for block specifications, bs3 v bs1 u bs2. By the inductive assumption, both:

ctx′u[self] v ctx1[self] u ctx2[self]
∀var : ctx′u[var] v ctx1[var] u ctx2[var]

Thus all of the conditions are met to use rule CO-PARAMS, and ctx′u v ctxu.

88 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

�

Lemma 6.20 (Comparison of Flow Positions is Reflexive). For any flow position f , f v f .

Proof. For each kind of flow position f may be, there is a rule showing that f v f . �

Lemma 6.21 (Comparison of Flow Positions is Transitive). For any three flow positions f1, f2, and f3, where
f1 v f2 and f2 v f3, it must be that f1 v f3.

Proof. Consider each way that it may be derived that f1 v f2:

• FO-TOP. Then f2 = >fp. It must also be that f3 = >fp, because otherwise it is impossible that f2 v f3.
Thus by FO-TOP, f1 v f3.

• FO-BOTTOM. Then f1 = ⊥fp. By FO-BOTTOM again, f1 v f3.

• FO-VAR. Then:

f1 = [: V var :]ctx1

f2 = [: V var :]ctx2

ctx1 v ctx2

Consider each possible way to justify that f2 v f3:

– FO-TOP. Then f3 = >fp. By FO-TOP, f1 v f3.

– FO-VAR. Then f3 = [: V var :]ctx3 where ctx2 v ctx3. Since comparison of contexts is transitive,
it must be that ctx1 v ctx3. Thus by FO-VAR, f1 v f3.

– FO-SUM-R Then f3 = [: Σ fs3 :] and there is some f ′3 ∈ fs3 such that f2 v f ′3 . One of the above
rules must have been used to justify f2 v f ′3 , and thus by the arguments given above it must be
that f1 v f ′3 . Thus, by FO-SUM-R, f1 v f3.

• FO-METH. Likewise.

• FO-SUM-L. Then f1 = [: Σ fs1 :] for some fs1, and for every f ′1 ∈ fs1, it must be that f ′1 v f2. If f2 is
not a sum flow position, then one of the above arguments will show that for each f ′1 ∈ fs1, f ′1 v f3, and
thus by FO-SUM-L, f1 v f3.

Thus, suppose f2 = [: Σ fs2 :]. Consider each f ′1 ∈ fs1 in turn. To justify that f ′1 v f2, rule FO-SUM-R
must have been used. Thus there must be some f ′2 ∈ fs2 such that f ′1 v f ′2 . Now, consider each way it
may have been justified that f2 v f3:

– FO-TOP. Then f3 = >fp, and f ′1 v f3.

– FO-SUM-L. Then every element of fs2, including f ′2 , is subsumed by f3. Thus, by one of the
above arguments, f ′1 v f3.

– FO-SUM-R. Then f3 = [: Σ fs3 :], and there must be some f ′3 ∈ fs3 such that f2 v f ′3 . To justify
that f2 v f ′3 , it is only possible to use FO-SUM-L. Thus, there must be a f ′2 ∈ fs2 such that
f ′2 v f ′3 . By one of the above arguments, it must also be that f ′1 v f ′3 . By FO-SUM-R, it must also
be that f ′1 v f3.

In all cases, f ′1 v f3. Since this argument holds for all f ′1 ∈ fs1, one may use FO-SUM-L to show that
f1 v f3.

• FO-SUM-R. Then f2 = [: Σ fs2 :] and there is some f ′2 ∈ fs2 such that f1 v f ′2 . Since f2 v f3, it is
straightforward to show that f ′2 v f3. Thus, by one of the arguments given previously, it must also be
that f1 v f3.

6.11. PROPERTIES OF CPASPLIT 89

�

Lemma 6.22 (Comparison of Flow Positions is Antisymmetric). For any flow positions f1 and f2 where both
f1 v f2 and f2 v f1, it must be that f1 = f2.

Proof. The proof directly parallels the proof of antisymmetric comparison of types and contexts. �

Lemma 6.23 (Join of Flow Positions is Complete). For any flow positions f1 and f2, there is a flow position
ft such that f1 t f2 = ft.

Proof. The proof by cases is straightforward. �

Lemma 6.24 (Meet of Flow Positions is Complete). If f1 and f2 are any flow positions, then there is a flow
position fu such that f1 u f2 = fu.

Proof. The proof is by induction on the construction of f1 and f2. The proof is straightforward. �

Lemma 6.25 (Join of Flow Positions is Correct). For any flow positions f1, f2, and ft, where f1t f2 = ft, ft
is the least upper bound of f1 and f2. That is, f1 v ft, f2 v ft, and for any f ′t such that f1 v f ′t and f2 v f ′t,
it must be that ft v f ′t.

Lemma 6.26 (Meet of Flow Positions is Correct). For any flow positions f1, f2, and fu, where f1 u f2 = fu,
fu is the greatest lower bound of f1 and f2. That is, fu v f1, fu v f2, and for any f ′u such that f ′u v f1 and
f ′u v f2, it must be that f ′u v fu.

Proof. The proofs for these two lemmas are directly parallel to those for the analogous lemmas for types. �

6.11 Properties of cpasplit
This section proves that cpasplit provides decompositions with various desirable properties. The first theorem
shows that the cpasplit of a data-flow structure includes all of the same semantic structures. That is, all of the
data-flow structures defined in this chapter are abstractions of concrete semantic structures, and the lemma
shows that cpasplit does not lose any of those concrete structures when it decomposes one abstract structure
into a number of smaller abstract structures.

Theorem 3 (Full Inclusiveness of Interpretations of cpasplit). Any object obj that is a member of a type t is
also a member of some element of cpasplit(t). Likewise, any activation act that is matched by context c is also
matched by some member of cpasplit(c). Finally, for any object obj that is in flow position f in configuration
cfg, the object is also in one of the flow positions cpasplit(f) in cfg.

Proof. The proof is by induction over the structure of t, c, or f . First consider t, an arbitrary type.
It cannot be that t = ⊥, because no object is a member of ⊥. If t is a class type, a selector type, or >,

then cpasplit(t) = {t} and one can choose t itself as the simple type of which obj is a member. If t is a block
type B{|b|}c, then obj is a block whose activation is matched by c. By the inductive assumption, there must be
a context c′ ∈ cpasplit(c) that also matches obj’s activation.

If t is a sum type Σts, then obj must be a member of t′ for some t′ ∈ ts. By the inductive assumption, obj
must also be a member of some type in cpasplit(t′). That type is an element of ts′ as defined in Figure 6.13.
Either that type, or a type that subsumes it, is a member of remove redundancies(ts′), and obj is a member
of whichever type that is.

This concludes all cases for the type t. Now consider an arbitrary context c and any activation act that
it matches. If c = >ctx or c = ⊥ctx then cpasplit(c) = {c} and one can choose c itself as the simple context
which matches act.

That leaves the case where c is a parameters context:

<: (bs) self : ts, p1 : t1, . . . , pn : tn :>

90 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

Since c matches act, the receiver of act must be a member of ts, and each parameter pi of act must be
a member of the corresponding ti. By the inductive assumption, the receiver must be a member of some
element t′s of cpasplit(ts), and each parameter pi must be an element of some element t′i of cpasplit(ti).
Combining those elements yields the following context which must include act:

<: (bs) self : t′s, p1 : t′1, . . . , pn : t′n :>

By the definition of cpasplit, either this context or a context which subsumes it is in cpasplit(c).
Finally, the proofs for decomposition of f , an arbitrary flow position, directly parallel those for types and

are omitted. �

The next theorem is similar to the previous, except that it applies to abstract data-flow structures instead
of concrete semantic structures.

Theorem 4 (Full Inclusiveness of cpasplit). If one simple data-flow object is v another data-flow object df ,
then it is also v one of the elements of cpasplit(df). That is:

1. If ts is a simple type and ts v t, then ∃t′ ∈ cpasplit(t) : ts v t′.

2. If cs is a simple context and cs v c, then ∃c′ ∈ cpasplit(c) : cs v c′.

3. If fs is a simple flow position and fs v f , then ∃ f ′ ∈ cpasplit(f) : fs v f ′.

Proof. First, let us dismiss some trivial cases. If ts = ⊥, then one can choose any t′ ∈ cpasplit(t) at all. If
ts = >, then it must be that t = > and thus that cpasplit(t) = {>}. Choose t′ = >. The cases where cs or fs

are their respective > and ⊥ elements are proven similarly.
Ignoring these cases, the proof is by induction on the structure of the data-flow structure that cpasplit is

applied to. If t is >, ⊥, a class type, or a selector type, then cpasplit(t) = {t}, and one can choose t′ = t. If t
is a block type B{|b|}c, then ts must also be some block type B{|b|}cs where cs v c. By the inductive assumption,
there is some c′ ∈ cpasplit(c) such that cs v c′. By the definition of cpasplit, either B{|b|}c′ ∈ cpasplit(t), in
which case we can choose t′ = B{|b|}c′ , or cpasplit(t) must include some type which is w B{|b|}c′ , in which case
we can choose that type for t′.

If t is a sum type Σts, then since ts v t it must be that there is a t′′ ∈ ts such that ts v t′′. By the induction
hypothesis, there is a t′′′ ∈ cpasplit(t′′) such that ts v t′′′. By the definition of cpasplit, either cpasplit(t)
must include t′′′, in which case we can choose t′ = t′′′, or it must include some element that is w t′′′, in which
case we can choose that element as t′.

If c is >ctx or ⊥ctx, then cpasplit(c) = {c}, so choose c′ = c. Otherwise, cs and c must both be parameters
contexts. All of the elements of cpasplit(c) are also parameters contexts, each of which has a block speci-
fication the same as c’s. Thus, the block specification of cs is v the block specificiation of every context in
cpasplit(c). By the inductive assumption, there is some t′

self
∈ cpasplit(c[self]) such that cs[self] v t′.

Likewise for each of the parameter pi types specified by cs: there must be a type t′i in the decomposition of
parameter pi’s type in c. One can use these to construct a parameters context whose block is the same as c’s,
whose self type is t′

self
, and whose parameter types are the t′i types. Either this context must be in cpasplit(c),

or there must be some context in cpasplit(c) that is w of it. Either way, there is a c′ ∈ cpasplit(c) such that
cs v c′.

The cases for flow positions all parallel cases proven above for types and contexts. If f = >fp or f = ⊥fp

then, as with the similar case for types and contexts, one can choose f ′ = f . If f is a sum flow positions, then
we can use the same approach used for sum types to find an appropriate f ′. If f is a self flow position or a
variable flow position, then as with block types, we can use the inductive assumption on the flow position’s
context to find a simple context that subsumes fs’s context, and then use that to find a flow position in the
decomposition of f that subsumes fs. �

6.11. PROPERTIES OF CPASPLIT 91

FM-SYM
f2 u f1 = f3
f1 u f2 = f3

FM-SUBSUME
f1 v f2

f1 u f2 = f1

FM-VAR
ctx1 u ctx2 = ctx ctx , ⊥ctx

[: V var :]ctx1 u [: V var :]ctx2 = [: V var :]ctx1uctx2

FM-VAR-DIFFCTX
ctx1 u ctx2 = ⊥ctx

[: V var :]ctx1 u [: V var :]ctx2 = ⊥fp

FM-DIFFVAR
var1 , var2

[: V var1 :]ctx1 u [: V var2 :]ctx2 = ⊥fp

FM-SELF
ctx1 u ctx2 = ctx ctx , ⊥ctx

[: S meth :]ctx1 u [: S meth :]ctx2 = [: S meth :]ctx1uctx2

FM-SELF-DIFFCTX
ctx1 u ctx2 = ⊥ctx

[: S meth :]ctx1 u [: S meth :]ctx2 = ⊥fp

FM-SELF-DIFFMETH
meth1 , meth2

[: S meth1 :]ctx1 u [: S meth2 :]ctx2 = ⊥fp

FM-VARSELF

[: V var :]ctx1 u [: S meth :]ctx2 = ⊥fp

FM-SUM
∀ f ′ ∈ fs : f ′ u f2 = m(f ′)

f3 =
⊔

f ′∈fs
m(f ′)

[: Σ fs :] u f2 = f3

Figure 6.12: Meet for Flow Positions

92 CHAPTER 6. DATA-FLOW ANALYSIS IN MINI-SMALLTALK

cpasplit(>) = > cpasplit(⊥) = ⊥ cpasplit({|c|}) = {{|c|}} cpasplit(S {|s|}) = {S {|s|}}

cpasplit(B{|bs|}ctx) = { B{|bs|}ctx′ | ctx′ ∈ cpasplit(ctx) }
ts′ =

⋃

t∈ts
cpasplit(t)

cpasplit(Σts) = remove redundancies(ts′)

cpasplit(>ctx) = >ctx cpasplit(⊥ctx) = ⊥ctx

sts = cpasplit(ts) ∀i ∈ 1 . . . n : sti = cpasplit(ti)
ctxs = {<: (bs) self : t′s, p1 : t′1, . . . , pn : t′n :> | t′s ∈ tss ∧ ∀i ∈ 1 . . . n : t′i ∈ sti}
cpasplit(<: (bs) self : ts, p1 : t1, . . . , pn : tn :> = remove redundancies(ctxs)

cpasplit(>fp) = >fp cpasplit(⊥fp) = ⊥fp

cpasplit([: V v :]c) = {[: V v :]c′ | c′ ∈ cpasplit(c)}

cpasplit([: S m :]c) = {[: S m :]c′ | c′ ∈ cpasplit(c)}

fs′ =
⋃

f∈fs
cpasplit(f)

cpasplit([: Σ fs :]) = remove redundancies(fs′)

Figure 6.13: The function cpasplit, which can be used do decompose any type, context, or flow position.

Chapter 7

Justification rules

Chapter 6 describes the data-flow judgements that DDP produces, but says nothing about which judgements
DDP produces, nor about how it finds those judgements. This chapter fills in both of these gaps by describing
the justification rules available to DDP.

Justification rules are specified as rules of inference, such that every judgement produced by DDP must
be justified using only those rules. When DDP produces a set of judgements, those judgements are always
justified by the justification rules of this chapter. Looked at in reverse, whenever DDP tries to solve a goal
and find a judgement satisfying it, it consults the available justification rules and follows them backwards. It
constructs a judgement to satisfy the goal, such that the judgement can possibly be justified using the available
rules.

Each justification rule has not only a conclusion, but also a number of assumptions. For the rule to be
used, all of its assumptions must be satisfied. In particular, each judgement listed in the assumptions must
itself be justified by another justification rule. The result is that, in general, the full justification of a judgement
is a tree of justifications. Such a tree is called a justification tree.

7.1 Meta-judgements
The justification rules frequently refer to two meta-judgements. First, the meta-judgement:

B j

means that judgement j is justified with respect to J and P. A justified judgement is locally consistent with
the other judgements in J . That is, if all of the other judgements in J are correct, then j must be as well.

Looking ahead to the correctness proof of Chapter 8, note that this reasoning is circular and thus not
enough to ensure that a set of justified judgements is also a set of correct judgements. For that to be the
case, the justification rules, given in this chapter, are careful to ensure that, roughly, the assumptions of
each rule refer only to information about the syntax of the program or to information about previous states
of execution. More precisely, any chain of justifications and assumptions must eventually refer to previous
states; some individual assumptions may refer to the current execution state, but there may not be a cycle of
such justifications and assumptions. By consistently arranging the justification rules that their assumptions
look back in time in this fashion, the stage is set for a proof by induction over steps of execution.

The second common meta-judgement referred to is a strictly weaker claim than B j. It looks like:

stat ? b B j

This judgement means that judgement j accounts for the possible execution of statement stat under bindings b.
It means that if j is correct in one configuration, and then stat executes—thus moving to a new configuration—
that j will remain correct in the new configuration. The bulk of the justification rules given in this chapter are

93

94 CHAPTER 7. JUSTIFICATION RULES

techniques for justifying accounts-for meta-judgements for different kinds of statements stat and data-flow
judgements j. To make the stronger claim that a judgement j is justified outright, one can simple show that j
accounts for all statements in the program being analyzed.

7.2 Subgoals: justification rules viewed backwards

Justification rules can be viewed in reverse as a tactic for finding a solution to a goal. Whenever DDP
updates a goal, i.e. whenever it runs the Update function described in Chapter 3, it finds a justification rule
whose conclusion is B j for some judgement j that is a possible answer to the goal. Then it tries to satisfy
each assumption of the rule. Some assumptions can be satisfied directly by simply modifying the goal’s
tentative solution. Others must themselves be justified, in which case DDP must recursively choose another
justification rule and try to justify the assumption.

Some assumptions require that j′ ∈ J for some judgement j′ meeting some list of constraints. In such a
case, DDP creates a subgoal to find a j′ meeting the required constraints. Note that justification of j is only
valid so long as every j′ of this kind is in J and justified. If any such j′ is removed from J and replaced
with a different judgement, then the justification of j must also be revisited. Thus, subgoals correspond to
dependencies; a goal’s tentative solution depends on its subgoals’ tentative solutions.

Consider an example based on the example of Chapter 3. The initial goal is “What is X?”, which is written
formally as:

X :>?

One of the justification rules is JUST-ONE, which is as follows:

JUST-ONE
meets min(j)

∀(stat, b) ∈ bound stats(P) :
stat ? b B j

B j

In order to use this rule, DDP must meet the rule’s assumptions. The strongest assumption to be met is the
one that j accounts for all statements in P. Statements that do not modify X are trivial to account for; the only
non-trivial ones in the example program are X := Y and X := p1. Both of these may both be accounted for
using the JUST-VAR justification rule:

T-VAR
v = b[l] v′ = b[l′] v′ :dce t′ ∈ J t′ v t

[l := l′] ? b B v :c t

Ignoring issues of variable bindings, and ignoring the trivial justifications, DDP could use these rules to reach
the following tentative justification tree:

{|UndefinedObject|} v tX

meets min(X :> tX) Y :> tY ∈ J tY v tX p1 :> tp1 ∈ J tp1 v tX

B X :> tX

This justification tree has three holes in it, however: tX , tY , and tp1. It is easy to choose tX once the other types
are known: choose the smallest type that satisfies all of the requirements in the assumptions. To fill in the
holes for tY and tp1, DDP creates two subgoals, one for Y :>? and one for p1 :>?. Informally, these subgoals
are read “What is Y?” and “What is p1?”. When these goals are initially created, they will be given a tentative
solution of ⊥. This leads to the following justification graph, which corresponds to the state of the example

7.3. OVERALL JUSTIFICATION APPROACH 95

execution from Figure 3.4.

{|UndefinedObject|} v {|UndefinedObject|}
meets min(X :> {|UndefinedObject|}) Y :> ⊥ ∈ J ⊥ v {|UndefinedObject|}

p1 :> ⊥ ∈ J tp1 v {|UndefinedObject|}
B X :> {|UndefinedObject|}

Note that the type of X at this stage is {|UndefinedObject|} instead of ⊥. For clarity, Chapter 3 ignored this
meets min requirement and thus left out the {|UndefinedObject|}’s from the entire example execution.

Also, note that the judgement X :> {|UndefinedObject|} is probably not correct. This example justification
only shows that the judgement is consistent with certain other judgements in J , namely Y :> ⊥ and p1 :> ⊥.
These two judgements are probably not justifiable. As DDP progresses, it will adjust them to be justifiable,
that is Y :> t1 for some type t1 and p1 :> t2 for some type t2, but then X :> {|UndefinedObject|} will no longer be
justifiable and must itself be adjusted. Thus, changes ripple from judgements to other judgements depending
on them, to other judgements depending on those, and so on until all judgements are justified with respect to
each other.

7.3 Overall justification approach
This subsection gives several general strategies available for justifying a judgement. All of these justification
rules are listed in Figure 7.1.

First, the judgement may be given some conservative value that is clearly correct regardless of how the
program behaves. Such a judgement is justified with one of the rules: JUST-PRUNE-TYPE, JUST-PRUNE-TFLOW,
JUST-PRUNE-FLOW, JUST-PRUNE-SEND, or JUST-PRUNE-RESP.

Second, one might show that a judgement is tautological. The rule JUST-CTX is such a rule: the type in
the judgement subsumes the type that the context already presumes the variable will hold.

Finally, a judgement may account for every statement in the program and be justified by the rule JUST-ONE.
The JUST-ONE rule requires that a judgement account for the possible execution of every statement in the
program. Additionally, JUST-ONE requires that any judgement meets a certain minimum value. In combi-
nation, these two requirements prepare for an inductive proof of correctness. The first part requires that no
matter which statement executes the judgement will remain correct, and the second part shows that the judge-
ment is correct initially. The minimum judged values are shown in Figure 7.2. They require that any type
judgement for a non-parameter includes the type of NilObj, because NilObj is the initial value automatically
assigned to variable whenever a new contour is allocated that holds that variable.

Not all judgements are justified by the rules of Figure 7.1. In particular, transitive flow judgements,
senders judgements, and responders judgements have their own justification rules which are described later.

7.4 Type justifications
Figure 7.3 gives several type justifications that are trivial. Most of these rules justify judgements where the
only variable changed is different from the one the judgement refers to.

Figure 7.4 gives the non-trivial type justifications for all other statement types. For the most part these
are straightforward. For example, T-VAR accounts for a statement l := l′ by the type for the variable on the
left being larger than a type for the variable on the right in the same context (or more specifically, the same
context after the context broadening described in section 6.9). To a first approximation, T-SELF accounts for
a statement l := self by the type for the variable on the left including the class cone type for the class the
statement appears in. To a closer approximation, T-SELF allows this type to be whittled down by the context
of the type judgement.

The type justification rules for method and block invocations are T-SEND, T-SENDVAR, and T-BEVAL.
Each of these reduces the justification to the justifications of two other judgements. One judgement accounts

96 CHAPTER 7. JUSTIFICATION RULES

JUST-PRUNE-TYPE

B v :c >

JUST-PRUNE-FLOW
fp is a simple flow position

B fp→ >fp

JUST-PRUNE-TFLOW

B fp→∗ >fp

JUST-PRUNE-SEND
ss = >s

B mctx
send←−−− ss

JUST-PRUNE-RESP
rs = >r

B statctx ? b
send−−−→ rs

JUST-ONE
meets min(j)

∀(stat, b) ∈ bound stats(P) :
stat ? b B j

B j

JUST-CTX
c[v] v t

B v :c t

Figure 7.1: Overall Justification Rules

MIN-NONTYPE
j is not a type judgement

meets min(j)

MIN-PARAMETER
v is a parameter

meets min(v :c t)

MIN-VAR
{|UndefinedObject|} v t

meets min(v :c t)

Figure 7.2: Minimum Requirements of Judgements

for types of the variable to be assigned when the method or block returns, while the other judgement accounts
for types of the parameters of any methods or blocks that might be invoked by the statement.

Figure 7.5 gives the first group: they account for the type of the variable on the left. The three trivial jus-
tifications, T-SEND-R-TRIV, T-SENDVAR-R-TRIV, and T-BEVAL-R-TRIV, require the assigned variable
to be different from the variable of the type judgement. The other three follow this pattern:

1. Find the methods or blocks that may be invoked by the statement.

2. Find the overall context that the method or block will run in, by finding types for the parameters and,
for method invocations, the receiver.

3. Divide that context, in CPA fashion, into a number of small contexts.

4. For each combination of an invoked method or block, a return statement in that method or block, and
one of the small contexts, find a type for the returned variable and require that the type of the variable
being judged is a supertype of that type.

Figure 7.6 gives justifications for parameter type judgements that were not justified by the rule T-CONTEXT.
Aside from the trivial justifications, the pattern for all of them is to find the statements that might invoke the
relevant block and, for each of these, to find a type for the relevant argument passed by the statement.

7.5 Flow justifications
Figure 7.7 and Figure 7.8 give those justifications for flow judgements that are trivial. There are many
of them; in addition to justifications based on mismatching variables, there are justifications based on the
statement type not having the relevant kind of flow at all. Self flow positions only flow via self statements,
and variable flow positions only flow via variable assignments, message sends, and returns. No flow at all
happens for literal creation, class instantiation, and block creation, because these statement types only create
new objects and do not move around existing objects.

7.5. FLOW JUSTIFICATIONS 97

T-LIT-TRIV
v , b[l]

[l := lit] ? b B v :c t

T-VAR-TRIV
v , b[l]

[l := l′] ? b B v :c t

T-NEW-TRIV
v , b[l]

[l := new class] ? b B v :c t

T-BLOCK-TRIV
v , b[l]

[l := block] ? b B v :c t

Figure 7.3: Trivial Type Justifications

T-LIT
v = b[l] t′ = lit type(lit) v t

[l := lit] ? b B v :c t

T-SEL
v = b[l]

selector = Selector label: ls numargs: ms

t′ = S {|ls,ms|} v t

[l := selector] ? b B v :c t

T-VAR
v = b[l] v′ = b[l′] v′ :dce t′ ∈ J t′ v t

[l := l′] ? b B v :c t

T-SELF
v = b[l] (c[self] u {|m.class|}+) v t

[l := self] ? b B v :c t

T-NEW
v = b[l] {|class|} v t

[l := new class] ? b B v :c t

T-BLOCK
v = b[l] B{|block|}dce v t

[l := block] ? b B v :c t

T-SEND
[l := send(lrcvr, sel, l1, . . . , lm)] ? b R B v :c t
[l := send(lrcvr, sel, l1, . . . , lm)] ? b S B v :c t

[l := send(lrcvr, sel, l1, . . . , lm)] ? b B v :c t

T-SENDVAR
[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b R B v :c t
[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b S B v :c t

[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b B v :c t

T-BEVAL
[l := beval(lblockvar, l1 . . . lm)] ? b R B v :c t [l := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

[l := beval(lblockvar, l1 . . . lm)] ? b B v :c t

Figure 7.4: Type Justifications.

98 CHAPTER 7. JUSTIFICATION RULES

T-SEND-R-TRIV
v , b[l]

[l := send(lrcvr, sel, l1 . . . lm)] ? b R B v :c t

T-SEND-R
v = b[l] stat = [[l := send(lrcvr, sel, l1 . . . lm)]]

statctx ? b
send−−−→ rs ∈ J ctx = c rs = (m1, c1) . . . (mp, cp)
∀i ∈ 1 . . . p : ∀ vret ∈ ret vars(mi) :
∃t′ : (vret :ci t′ ∈ J) ∧ (t′ v t)

[l := send(lrcvr, sel, l1 . . . lm)] ? b R B v :c t

T-SENDVAR-R-TRIV
v , b[l]

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b R B v :c t

T-SENDVAR-R
stat = [[l := sendvar(lrcvr, lselvar, l1 . . . lm)]]

statctx ? b
send−−−→ rs ∈ J ctx = c rs = (m1, c1) . . . (mp, cp)
∀i ∈ 1 . . . p : ∀ vret ∈ ret vars(mi) :
∃t′ : (vret :ci t′) ∈ J) ∧ (t′ v t)

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b R B v :c t

T-BEVAL-R-TRIV
v , b[l]

[l := beval(lblockvar, l1 . . . lm)] ? b R B v :c t

T-BEVAL-R
stat = [[l := beval(lblockvar, l1 . . . lm)]]

statctx ? b
send−−−→ rs ∈ J ctx = c rs = (blk1, bctx1) . . . (blkp, bctxp)

∀i ∈ 1 . . . p : blki.retFromMethod ∨ ∃t′ : (ret var(blki) :bctxi t′ ∈ J) ∧ (t′ v t)

[l := beval(lblockvar, l1 . . . lm)] ? b R B v :c t

Figure 7.5: Return Type from Subroutine Invocations

7.5. FLOW JUSTIFICATIONS 99

T-SEND-S-TRIV
(v is not a method parameter)

[ll := send(lrcvr, sel, l1 . . . lm)] ? b S B v :c t

T-SEND-S
(v is the k-th parameter of method meth)

stat = [[ll := send(lrcvr, sel, l1 . . . lm)]]

methctx
send←−−− ss ∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss :
sstat , stat ∨ sb , b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[ll := send(lrcvr, sel, l1 . . . lm)] ? b S B v :c t

T-SENDVAR-S-TRIV
(v is not a method parameter)

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b S B v :c t

T-SENDVAR-S
(v is the k-th parameter of method meth)

stat = [[ll := sendvar(lrcvr, lselvar, l1 . . . lm)]]

methctx
send←−−− ss ∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss :
sstat , stat ∨ sb , b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b S B v :c t

T-BEVAL-S-TRIV
(v is not a block parameter)

[ll := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

T-BEVAL-S
(v is the k-th parameter of block blk)
stat = [[ll := beval(lblockvar, l1 . . . lm)]]

blkctx
send←−−− ss ∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss :
sstat , stat ∨ sb , b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[ll := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

Figure 7.6: Parameter Types after Subroutine Invocations

100 CHAPTER 7. JUSTIFICATION RULES

Figure 7.9 gives the flow justifications that are non-trivial. F-SELF and F-VAR are straightforward. The
three send justifications F-SEND, F-SENDVAR, and F-BEVAL simply divide the justification into smaller
justifications:

• Justification that the judgement accounts for the flow of the receiver:

[stat] ? b self B [: V v :]c → f

This meta-judgement claims that the flow judgement [: V v :]c → f accounts for the flow from the
receiver of stat into the method receiver of any method that may be invoked by stat.

• Justification that the judgement accounts for the flow of each parameter:

stat ? b i B [: V v :]c → f

This meta-judgement claims that the flow judgement accounts for flow into the ith parameter of any
invoked method by stat.

• Justification that the judgement accounts for flow from the method or block back to the statement:

stat ? b < ms > B [: V v :]c → f

This meta-judgement claims that the judgement accountss for flow from the return of method ms into
the assigned variable of stat.

Figure 7.10, Figure 7.11, and Figure 7.12 give justifications for flow into a method or block. They follow
exactly the same pattern as the justification for types of method or block parameters. Figure 7.13, Figure 7.14,
and Figure 7.15 give justifications for flow out of a method and block through returned values.

Figure 7.16 gives the justification rule for transitive flow judgements. It insists that for some decompo-
sition of the target into a number of components, there are simple flow judgements from each component
back into the target. Typically, f ′ will be a sum flow position [: Σ fs :], and the implementation will choose a
decomposition of f ′ into the elements of fs.

7.6 Responders justifications

There are three responders justification rules, corresponding to the three statement types that can invoke a
subroutine. They are R-SEND, R-SENDVAR, and R-BEVAL, and they are listed in Figure 7.17.

In each case, the justification relies on having a type for each argument, receiver, block variable, and
selector variable that is present in the statement. These types are used to predict which methods or blocks
will be invoked by the statement when it executes. In R-SEND, the combination of the type of the receiver
and the selector that is present limit the number of methods that may be invoked. In R-SENDVAR, the
possible selectors are found using the possible selectors function on the type of the selector variable; this
function assumes that its argument has a finite number of selector types included, and it returns the list of
selectors corresponding to those types. In R-BEVAL, the possible responding blocks are similarly found by
using the possible blocks function. For both R-SENDVAR and R-BEVAL, if there are not a finite number
of selectors or blocks, then the function may not be used and thus the justification may not be used. In such
a case the responders judgement can only justified with JUST-PRUNE-RESP.

Once the responding methods or blocks are found, the argument types are used to find the contexts under
which the method can execute. Those contexts are split into multiple smaller contexts using cpasplit. Finally,
the responders set is required to include each possible pair of a small context and a method or block.

7.6. RESPONDERS JUSTIFICATIONS 101

F-LIT

[l := literal] ? b B [: V v :]c → f

F-VAR-TRIV
v , b[l]

[l′ := l] ? b B [: V v :]c → f

F-NEW

[l := new class] ? b B [: V v :]c → f

F-SELF-TRIV

[l := self] ? b B [: V v :]c → f

Figure 7.7: Trivial Flow Justifications for Variable Flow Positions

F-SELF-TRIV0
m , b[method]

[l := self] ? b B [: S m :]c → f

F-SELF-TRIV1

[l := literal] ? b B [: S m :]c → f

F-SELF-TRIV2

[l := l′] ? b B [: S m :]c → f

F-SELF-TRIV3

[l := new class] ? b B [: S m :]c → f

F-SELF-TRIV4

[l := block] ? b B [: S m :]c → f

F-SELF-TRIV5

[l := send(lr, sel, l1 . . . lm)] ? b B [: S m :]c → f

F-SELF-TRIV6

[l := send(lr, selvar, l1 . . . lm)] ? b B [: S m :]c → f

F-SELF-TRIV7

[l := beval(lb, l1 . . . lm)] ? b B [: S m :]c → f

Figure 7.8: Trivial Flow Justifications for Self Flow Positions

102 CHAPTER 7. JUSTIFICATION RULES

F-VAR
v = b[l] v′ = b[l′] [: V v′ :]dce v f

[l′ := l] ? b B [: V v :]c → f

F-SELF
v = b[l] m = b[method] [: V v :]dce v f

[l := self] ? b B [: S m :]c → f

F-SEND
stat = ll := send(lrcvr, sel, l1 . . . lm)

[stat] ? b self B [: V v :]c → f ∀i ∈ 1 . . .m : stat ? b i B [: V v :]c → f
∀ms ∈ method specs(P) : stat ? b < ms > B [: V v :]c → f

[ll := send(lrcvr, sel, l1, . . . , lm)] ? b B [: V v :]c → f

F-SENDVAR
stat = ll := sendvar(lrcvr, lselvar, l1 . . . lm)

[stat] ? b self B [: V v :]c → f ∀i ∈ 1 . . .m : stat ? b i B [: V v :]c → f
∀ms ∈ method specs(P) : stat ? b < ms > B [: V v :]c → f

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b B [: V v :]c → f

F-BEVAL
stat = ll := beval(lblockvar, l1 . . . lm) ∀i ∈ 1 . . .m : stat ? b i B [: V v :]c → f

∀bs ∈ block specs(P) : stat ? b < bs > B [: V v :]c → f

[ll := beval(lblockvar, l1 . . . lm)] ? b B [: V v :]c → f

Figure 7.9: Non-Trivial Flow Justifications

F-SEND-PARAM-TRIV
b[lk] , v

[ll := send(lrcvr, sel, l1 . . . lm)] ? b k B [: V v :]c → f

F-SEND-PARAM

[[ll := send(lrcvr, sel, l1 . . . lm)]]ctx ? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: V mi.params[k] :]ctxi v f

[ll := send(lrcvr, sel, l1 . . . lm)] ? b k B [: V v :]c → f

F-SEND-SELF-TRIV
rcvr , v

[ll := send(lrcvr, sel, l1 . . . lm)] ? b self B [: V v :]c → f

F-SEND-SELF

[[ll := send(lrcvr, sel, l1 . . . lm)]]ctx ? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi :]ctxi v f

[ll := send(lrcvr, sel, l1 . . . lm)] ? b self B [: V v :]c → f

Figure 7.10: Flow into Method Invocation

7.6. RESPONDERS JUSTIFICATIONS 103

F-SENDVAR-PARAM-TRIV
v , b[lk]

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b k B [: V v :]c → f

F-SENDVAR-PARAM

[[ll := sendvar(lrcvr, lselvar, l1 . . . lm)]]ctx ? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi.params[k] :]ctxi v f

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b k B [: V v :]c → f

F-SENDVAR-SELF-TRIV
v , b[lrcvr]

[ll := send(lrcvr, lselvar, l1 . . . lm)] ? b self B [: V v :]c → f

F-SENDVAR-SELF

[[ll := sendvar(lrcvr, lselvar, l1 . . . lm)]]]ctx ? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi :]ctxi v f

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b self B [: V v :]c → f

Figure 7.11: Flow into sendvar Statements

F-BEVAL-PARAM-TRIV
v , b[lk]

[ll := beval(lblock, l1 . . . lm)] ? b k B [: V v :]c → f

F-BEVAL-PARAM
vk = v ∀i ∈ 1 . . .m : vi = b[li]

stat = ll := beval(lblock, l1 . . . lm) statctx ? b
send−−−→ rs ∈ J rs = (blk1, bctx1) . . . (blkp, bctxp)

∀i ∈ 1 . . . p : [: V blki.parms[k] :]bctxi v f

[ll := beval(lblock, l1 . . . lm)] ? b k B [: V v :]c → f

Figure 7.12: Flow into beval Statements

F-RETURN-SEND-BADVAR
meth = lookup meth specP(mcalled) v < ret vars(meth)

[ll := send(lrcvr, sel, l1 . . . lm)] ? b < mcalled > B [: V v :]c → f

F-RETURN-SEND
stat = ll := send(lrcvr, sel, l1 . . . lm)

methctx
send←−−− ss ∈ J ctx = dce meth = mcalled

∀(sstat, sb, sctx) ∈ ss :
stat , sstat ∨ sb , b ∨ [: V b[l] :]dsctxe v f

[ll := send(lrcvr, sel, l1 . . . lm)] ? b < mcalled > B [: V v :]c → f

Figure 7.13: Flow from methods into send statements

104 CHAPTER 7. JUSTIFICATION RULES

F-RETURN-SENDVAR-BADVAR
meth = lookup meth specP(mcalled) v < ret vars(meth)

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b < mcalled > B [: V v :]c → f

F-RETURN-SENDVAR
stat = ll := sendvar(lrcvr, lselvar, l1 . . . lm)

methctx
send←−−− ss ∈ J ctx = dce meth = mcalled

∀(sstat, sb, sctx) ∈ ss :
stat , sstat ∨ sb , b ∨ [: V b[l] :]dsctxe v f

[ll := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b < mcalled > B [: V v :]c → f

Figure 7.14: Flow from methods into sendvar statements

F-BRETURN-BEVAL-BADVAR
block = lookup block specP(binvoked) block.returns , v

[ll := beval(lblockvar, l1 . . . lm)] ? b < binvoked > B [: V v :]c → f

F-BRETURN-BEVAL-METHRET
block = lookup block specP(binvoked) block.retFromMethod

[ll := beval(lblockvar, l1 . . . lm)] ? b < binvoked > B [: V v :]c → f

F-BRETURN-BEVAL
stat = ll := beval(lblockvar, l1 . . . lm)

blkctx
send←−−− ss ∈ J ctx = dce blk = binvoked

∀(sstat, sb, sctx) ∈ ss :
stat , sstat ∨ sb , b ∨ [: V b[l] :]dsctxe v f

[ll := beval(lblockvar, l1 . . . lm)] ? b < binvoked > B [: V v :]c → f

Figure 7.15: Flow from blocks into beval statements

F-TRANS
f v f ′

f1 t f2 t · · · t fp = f ′

∀i ∈ 1 . . . p : ∃ f ′i : fi → f ′i ∈ J ∧ f ′i v f ′

B f →∗ f ′

Figure 7.16: Transitive Flow Judgements

7.7. SENDERS JUSTIFICATIONS 105

7.7 Senders justifications
Senders judgements are justified indirectly, using JUST-ONE. A justified senders judgement must account
for every statement in the program.

Figure 7.18 gives various trivial ways that a judgement may account for a statement. S-SELF, S-LIT,
S-SEL, S-VAR, S-NEW, and S-BLOCK rely on the statement not invoking any subroutine at all. S-SEND-TRIV,
S-SENDVAR-TRIV, and S-BEVAL-TRIV rely on the statement invoking the wrong kind of subroutine, e.g.
the fact that beval statements always invoke blocks and not methods.

The non-trivial justifications are shown in Figure 7.19. For send statements, the statement may be left
out of the senders set if either the selector does not match (S-SEND-BADSELECTOR), or if there is a type
for the receiver such that the method cannot be executed (S-SEND-BADRECV). Otherwise, the statement
must be included in the senders set (S-SEND).

For sendvar and beval statements, a different approach is taken. The flow is traced forward for the
relevant selector or block. Only if the flow reaches the statement must the statement be included in the
senders set; if the flow does reach the statement, the statement is added to the senders set with no further
inquiry. The justification rules that implement this approach are S-SENDVAR and S-BEVAL.

In S-SENDVAR, flow is traced forward from each statement creating a selector object for the relevant se-
lector. The function flow select is then used to extract the portion of the reached flow position that matches
the variable from which the sendvar statement is reading its selector. Note that if there is no statement in-
stantiating a selector object for the relevant selector, then one can choose fsel = ⊥ctx and thus use S-SENDVAR
to reject all sendvar statements as potential senders. In S-BEVAL, the function blk stat is used to find the
statement that creates the block, and then flow select is used to find that portion of the reached flow position
that matches the variable the beval statement reads its block from.

106 CHAPTER 7. JUSTIFICATION RULES

R-SEND
rcvr = b[lrcvr] ∀i ∈ 1 . . .m : vi = b[li] rcvr :dctxe trcvr ∈ J ∀i ∈ 1 . . .m : vi :dctxe ti ∈ J

(m1, . . . ,mn) = lookup∗P(trcvr, sel) ∀i ∈ 1 . . . n : ci = <: (mi) self = trcvr, . . . , mi.parm[m] = tm :>
∀i ∈ 1 . . . n : (c(i,1), . . . , c(i,pi)) = cpasplit(ci) ∀i ∈ 1 . . . n : ∀ j ∈ 1 . . . pi : (mi, c(i, j)) ∈ rs

B [[l := send(lrcvr, selector, l1 . . . lm)]]ctx ? b
send−−−→ rs

R-SENDVAR
rcvr = b[lrcvr] selvar = b[lsemvar] ∀i ∈ 1 . . .m : vi = b[li] rcvr :dctxe trcvr ∈ J

selvar :dctxe tsel ∈ J ∀i ∈ 1 . . .m : vi :dctxe ti ∈ J (sel1, . . . , selq) = possible selectors(tsel)
(m1, . . . ,mn) = append(lookup∗P(trcvr, sel1), . . . , lookup∗P(trcvr, selq))
∀i ∈ 1 . . . n : ci = <: (mi) self = trcvr, . . . , mi.parm[m] = tm :>

∀i ∈ 1 . . . n : (c(i,1), . . . , c(i,pi)) = cpasplit(ci) ∀i ∈ 1 . . . n : ∀ j ∈ 1 . . . pi : (mi, c(i,j)) ∈ rs

B [[l := sendvar(lrcvr, selvar, l1 . . . lm)]]ctx ? b
send−−−→ rs

R-BEVAL
blockvar = b[lblockvar] ∀i ∈ 1 . . .m : vi = b[li] blockvar :dctxe tblocks ∈ J

∀i ∈ 1 . . .m : vi :dctxe ti ∈ J (B{|blk1|}bctx1 , . . . , B{|blkn|}bctxn) = possible blocks(tblocks)
∀i ∈ 1 . . . n : ci = <: (blki) blki.parm[1] = t1, . . . , blki.parm[m] = tm :>

∀i ∈ 1 . . . n : (c(i,1), . . . , c(i,pi)) = cpasplit(ci)
∀i ∈ 1 . . . n : ∀ j ∈ 1 . . . pi : (blki, c(i, j)) ∈ rs

B [[l := beval(lblockvar, l1 . . . lm)]]ctx ? b
send−−−→ rs

Figure 7.17: Responders Justifications

S-SELF

[l := self] ? b B bsctx
send←−−− ss

S-LIT

[l := literal] ? b B bsctx
send←−−− ss

S-VAR

[l := l′] ? b B bsctx
send←−−− ss

S-NEW

[l := new cname] ? b B bsctx
send←−−− ss

S-BLOCK

[l := block] ? b B bsctx
send←−−− ss

S-SEND-TRIV
(bs does not specify a method)

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SENDVAR-TRIV
(bs does not specify a method)

[l := sendvar(lrcvr, selvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-BEVAL-TRIV
(bs specifies a method)

[l := beval(lblock, l1 . . . lm)] ? b B bsctx
send←−−− ss

Figure 7.18: Trivial Senders Justifications

7.7. SENDERS JUSTIFICATIONS 107

S-SEND-BADSELECTOR
sel , bs.selector

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SEND-BADRECV
rcvr = b[lrcvr] rcvr :>ctx trcvr ∈ J

b.method < lookup∗P(trcvr, sel)

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SEND
stat = l := send(lrcvr, sel, l1 . . . lm)

(stat, b,>ctx) ∈ ss

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SENDVAR
stat = l := sendvar(lrcvr, lselvar, l1 . . . lm)

rcvr = b[lrcvr] selvar = b[lselvar]
∀(ls := sel, b′′) ∈ bound stats(P) : ∃ f ′′ :

([: V static bindings(b′′)[ls] :]>ctx →∗ f ′′ ∈ J) ∧ (f ′′ v fsel)
∀[: V selvar :]c′ ∈ flow select(fsel, selvar) : ∃(rcvr :dc′e tr ∈ J) :

(mcalled < (lookup∗P(tr, sel))) ∨ ((stat, b, c′) ∈ ss)

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-BEVAL
stat = l := beval(lblockvar, l1 . . . lm)

blockvar = b[lblockvar]
blk inst := blk = blk stat(b′) [: V blk inst :]dctxe →∗ fb ∈ J?

([: V blockvar :]ctx1 , . . . , [: V blockvar :]ctxp) = flow select(fb, blockvar)
∀i ∈ 1 . . . p : (stat, b, ctxi) ∈ ss

[l := beval(lblockvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

Figure 7.19: Non-Trivial Senders Justifications

108 CHAPTER 7. JUSTIFICATION RULES

Chapter 8

Correctness of DDP

8.1 Overview
This chapter proves the following theorem:

Theorem 5 (Correctness of DDP). If a set of judgements J is justified with respect to a program P, then J
is correct for P.

Essentially this theorem verifies that the voluminous and subtle justification rules of Chapter 7 result in
a set of judgements that are correct according to the straightforward definitions of Chapter 6 and under the
straightforward semantics of Chapter 5. This choice applies systematic mathematical analysis to the portion
of the problem where subtle errors are easy to make and where mathematical analysis is especially effective.

Some portions of the algorithm’s correctness are left unverified by this theorem. In particular, it does not
verify that the dependency-driven worklist portion of the algorithm generates a set of justified judgements.
However, that portion of the algorithm is similar enough to proven worklist algorithms for intraprocedural
data-flow analysis [5] that we believe the reader will be confident the algorithm generates sets of justified
judgements even without a proof.

Likewise, the pruning algorithm is not addressed in this document’s mathematical analysis. So long as
the chosen pruning algorithm limits its activities to pruning per se, i.e. to giving solutions to goals that are
conservative enough to be correct without requiring any subgoals, we trust the reader will believe that overall
algorithm produces justified judgements without needing a proof.

8.2 Lemmas
This section gives several lemmas that will be used in the full proof of correctness of the following section.

The purpose of the Writing Variables Lemma for Types is to show that a type judgement remains correct
after a variable is written.

Lemma 8.1 (Writing Variables for Types). Let cfg = (act, cnt) = stepn(P), l be any label for a writable
variable in cfg, object be a valid object for cfg, and var :ctx type be a type judgement that is correct for cfg.
Suppose one of the following is true:

1. var , dynlookup varP(cfg, act, l) .

2. ctx does not match act.

3. obj is of type type.

Then var :ctx type is correct for write var(cfg,l,obj).

109

110 CHAPTER 8. CORRECTNESS OF DDP

Proof. Let cfg′ = write var(cfg, l, obj). Note that all activations(cfg) = all activations(cfg′), i.e. there is
no activation that is either created or destroyed by writing a variable. Consider each act ∈ all activations(cfg)
in turn. The definition in subsection 6.7.1 requires the following property of act:

ctx(act, cfg) ∧ var = dynlookup varP(cfg, act, var.label)
⇒ read var(cfg, act, var.label) ∈ type

Let cidmod be the contour that is modified by the call to write var:

cidmod = lookup contourP(cfg, act, l, false)

Suppose that ctx(act, cfg) and that var = dynlookup varP(cfg, act, var.label), because otherwise the re-
quired property is vacuously true. There are several cases, all straightforward.

Suppose l = var.label but that the contour that was written is different from the contour that l will be read
from in act:

cidmod , lookup contourP(cfg, act, l, false)

Then, write var would not modify the contour l will be read from in act, and thus reading l from act will
give the same object as before. Thus the required property will remain true.

Suppose that var , dynlookup varP(cfg, act, l). If l , var.label then the object read from cfg′ is the
same as from cfg and thus the required property is trivially true. Otherwise, by the Unshared Contours Lemma
from subsection 6.2.4, the contour modified by the write var must be different from that read in cfg′, and
thus the object read must still be the same in both cfg′ and cfg.

Suppose that all of the above cases are false and that ctx does not match cfg.act. Then it is impossible for
both ctx to match act and cidmod to be the contour that l would be read from in act. Since the type judgement
is well-formed, any parameter mentioned in ctx must be readable from any activation where var may be read.
Since by assumption the contour var is read from is cidmod, the objects read for each parameter mentioned
in ctx must be the same in both act and cfg.act. Thus, ctx does not match act and the necessary property is
vacuously true.

Finally, if all of the other cases are false, then object ∈ type and the contour read from is cidmod. In this
case, the necessary property is trivially true. �

The following two lemmas are used to show that a flow judgement remains correct across one step of
execution, with respect to one particular object. The first lemma concerns the case where a step of execution
writes a different object than the object of interest. Informally, when the first lemma applies, it is said that
“the flow of the object does not increase”.

Lemma 8.2 (Writing Different Objects for Flow). If object , object′, and l is a label for a writable variable
of configuration cfg, and:

cfg′ = write var(cfg, l, object)

then:
flowpos(object, cfg′) v flowpos(object, cfg)

Proof. Note that the flow position of an object in a configuration may be computed by enumerating the acti-
vations and contours of the configuration, selecting the contours and activations that bind a variable or method
receiver to the object, and then taking the union of the simple flow positions designating those bindings.

In this case, the configurations cfg and cfg′ are the same except that one contour has one variable rebound.
Let cid be the id of the contour that changes. If cid does not bind l to object in cfg, then same contours and
activations will contribute the same simple flow positions to the overall flow position of object in both cfg
and cfg′. Thus the union of those flow positions will be the same for cfg and cfg′. If, however, cid does bind
l to object, then there will be one fewer contribution in cfg′. That is,

flowpos(object, cfg) = (flowpos(object, cfg′) t f)

8.2. LEMMAS 111

for some f . Therefore,
flowpos(object, cfg′) v flowpos(object, cfg)

�

The second lemma concerns the case where the object of interest is written in a step of execution using
write var. In this case, the flow position of the object does increase. The lemma is used to show that a set
of flow judgements correctly allows for the increase of flow position that occurs.

Lemma 8.3 (Writing Variables for Flow). Let cfg = (act, cnt) = stepn(P), l be any label for a writable
variable in cfg, object be a valid object for cfg, G be a set of flow judgements, f = lhs(G), and f ′ = rhs(G).
Suppose flowpos(object, cfg) v f . Let

var = dynlookup varP(cfg, act, l)

and
ctx = minctxP(cfg)

and
fpos = [: V var :]ctx

and
cfg′ = write var(cfg, var.label, object)

If fpos v f ′, then flowpos(object, cfg′) v (f t f ′) .

Proof. Again, one contour will be different in cfg and cfg′. Call it cid. That contour will contribute one new
flow position fcid to the flow position of object, i.e.

flowpos(object, cfg′) = flowpos(object, cfg) t fcid

where fcid is the new contribution. If one considers each way that var might be determined with dynlookup var,
one sees that the resulting contribution fcid will be exactly fpos as declared above. Thus:

flowpos(object, cfg′) = flowpos(object, cfg) t fpos

flowpos(object, cfg) t fpos v f t f ′

flowpos(object, cfg′) v f t f ′

�

The next lemma gives a basis for reasoning about where selector objects for a particular selector may be
found as the program runs.

Lemma 8.4 (Flow Position of Selectors). Suppose that:

• sel is any selector.

• For each literal statement:
([[l := sel]], b) ∈ bound stats(P)

that instantiates selector sel, it is true that ∃i : fi = [: V b[l] :]>ctx .

• The judgements f1 →∗ f ′1 , . . . , fp →∗ f ′p are correct for configurations step0(P) . . . stepn+1(P).

• fp =
⊔p

i=1 f ′i

Then, for any selector object so ∈ all objectsP(stepn+1(P)) whose selector is sel, both of the following are
true:

112 CHAPTER 8. CORRECTNESS OF DDP

• There is an m ≤ n + 1 such that the flow position of so in stepm(P) is subsumed by fi for some i.

• so is within flow position fp in stepn+1(P).

Proof. The proof is by induction on the number of steps of execution.
The base case is trivial: there are no selector objects at all in all objectsP(step0(P)).
Assume, then, that the lemma is correct for configurations 0 . . . n, and we will show that it must also be

correct for configuration n + 1.
Suppose the next statement to execute in stepn(P) is a literal statement l := sel, under static bindings

b, that instantiates the selector of interest. The statement creates a new selector object whose flow position
in stepn+1(P) is exactly [: V b[l] :]c for some context c. Since ([[l := sel]], b) ∈ bound stats(P), there
must be an fi which subsumes [: V b[l] :]c, thus satisfying the first claim of the lemma for the newly created
selector object. Regarding the second claim, notice that whenever f →∗ f ′ holds true, it must be that f v f ′.
Since fi →∗ f ′i , the flow position of the new selector object must be subsumed by f ′i as well by fi. Since
fp =

⊔p
i=1 f ′i , the object must also be in position fp.

Now consider any other selector object so ∈ all objectsP(stepn+1(P)) whose selector is sel. Inspection
of the semantics will show that any such object must also be present in the previous configuration, i.e.,
so ∈ all objectsP(stepn(P)). Further, the flow position of so is unaffected by the execution of l := sel.
Therefore, for any such object so, the inductive hypothesis leads immediately to the same claims holding true
for configuration n + 1.

Finally, suppose some statement executes other than a literal statement instantiating sel. In that case, no
new selector objects for sel appear in stepn+1(P). The first claim of the lemma is satisfied by choosing the
same i’s for each selector object that, due to the inductive assumption, must have been available in stepn(P).
The second claim is slightly less trivial, because the flow positions of the existing sel selector objects may
have increased. For any such object so, however, the first claim that the flow position of so was subsumed by
one of the fi’s in an earlier configuration, when combined with the lemma’s assumption that fi →∗ f ′i is true
in configurations 0 . . . n + 1, leads to the second claim. The flow position of so must be subsumed by f ′i and
thus also subsumed by fp. �

The next lemma is similar to the last, except that it reasons about the location of block objects instead of
selector objects.

Lemma 8.5 (Flow Position of Blocks). Suppose that:

• bs specifies any block in P.

• If

([[l := block]], b) ∈ bound stats(P)

is the statement corresponding to bs, then [: V b[l] :]>ctx →∗ fp is true for configurations step0(P), . . . ,
stepn+1(P).

Then, for any closure bobj ∈ all objectsP(stepn+1(P)) whose block is bs, bobj is in the flow position fp in
stepn+1(P).

Proof. The proof closely parallels that for the Flow Position of Selectors Lemma. �

8.3. MAIN THEOREM 113

8.3 Main theorem
The proof is subdivided into proofs of the following propositions for arbitrary n:

F∗(0)
T (0)

T (n) ⇒ R(n)
(n = 0 ∨ S (n − 1)) ∧ T (n) ∧ F∗(n) ⇒ S (n)

T (n) ∧ R(n) ∧ S (n) ⇒ T (n + 1)
R(n) ∧ (n = 0 ∨ S (n − 1)) ⇒ F(n)

F∗(n) ∧ F(n) ⇒ F∗(n + 1)

where:

• T (n) means that the type justifications in J are correct for configuration stepn(P).

• F(n) means that the flow justifications in J are correct for configuration stepn(P).

• F∗(n) means that the transitive flow justifications in J are correct for the configurations step0(P)
through stepn(P).

• R(n) means that the responders justifications in J are correct for configuration stepn(P).

• S (n) means that the senders justifications inJ are correct for configurations step0(P) through stepn(P).

Given these propositions, it is then straightforward to show by induction that:

∀n : T (n) ∧ F(n) ∧ F∗(n) ∧ R(n) ∧ S (n)

which is the desired theorem.
Each subsection below proves one of the above propositions to be true. In general, each section assumes

that neither stepn(P) nor stepn+1(P) is halted, because otherwise the proof in that subsection is trivial.

8.3.1 Transitive flow judgements in the initial configuration
It is to be shown that:

F∗(0)

That is, it is to be shown that the transitive flow judgements of J are correct in the initial configuration.
For all f →∗ f ′ ∈ J , it must be shown that f v f ′. Each such judgement must have been justified with

either J-PRUNE-FTRANS or F-TRANS. If rule J-PRUNE-FTRANS was used, then f ′ = >fp, and thus it
must be that f v f ′. If F-TRANS was used, then f v f ′ is directly listed as an assumption of the justification.

8.3.2 Type judgements in the initial configuration
It is to be shown that:

T (0)

That is, it is to be shown that the type judgements of J are correct in the initial configuration.
There are no parameters bound in the initial configuration, and thus any type judgements regarding pa-

rameters are trivially true. The type judgements involving non-parameter variables must be justified with
either JUST-PRUNE-TYPE or JUST-ONE; they cannot be justified with JUST-CTX, because only parame-
ters have a type specified by a context. For any judgement that is justified by JUST-PRUNE-TYPE, the type
is > and thus the judgement is trivially true. For any non-parameter type judgement justified by JUST-ONE,
the type must subsume {|UndefinedObject|}. Since every variable binding in the initial configuration binds to
NilObj, these judgements are correct in the initial configuration.

114 CHAPTER 8. CORRECTNESS OF DDP

8.3.3 Responders judgements
It is to be shown that:

T (n)⇒ R(n)

That is, it is assumed that the type judgements are correct in configurations up to n, and it must be shown that
these assumptions imply that the responders judgements are true in configuration n.

A responders judgement statctx?b
send−−−→ rs must be justified by one of the rules R-SEND, R-SENDVAR,

or R-BEVAL, JUST-PRUNE-RESP, depending on the form of stat and on whether rs is non-trivial. To avoid
triviality, suppose that rs , >r, that stat is about to execute, that b[block] is the block of the main activation,
and that ctx matches the main activation of cfg. Under these assumptions, JUST-PRUNE-RESP could not
have been used.

Consider send statements first. That is, suppose:

stat = [[l := send(lrcvr, selector, l1 . . . lm)]]

The rule R-SEND must have been used. By the Lexical Binding Lemma, the variables vrcvr, etc., deduced
from lrcvr, etc., by using the binding map b, are the same as would be found with dynamic bindings on
the main activation of cfg. By the inductive assumption, and by the proofs above for correctness of type
judgements, all of the type judgements required by the assumption of R-SEND are correct for cfg. Thus, the
object found by reading lrcvr is a member of type trcvr, and likewise the object found by reading any li is a
member of type ti.

Thus, lookup∗ will have correct information and so the method about to be invoked is one of the methods
m1 . . .mn. Suppose the method is m j. Further, the context of the new activation must match c j. Since cpasplit
has full inclusiveness of interpretations (Theorem 3), it must further be that the new activation matches one
of the split contexts c(j,k). By the last assumption of R-SEND, it must be that

(m j, c(j,k)) ∈ rs

Thus the judgement is correct.
The proofs for sendvar and beval statements are close parallels. Note that the justification rules implic-

itly require, respectively, that there are a finite number of possible selectors possibly held by selvar or a finite
number of blocks possibly held by blockvar. If this criterion fails, then these justification rules cannot have
been used and thus the responder set must be >r.

8.3.4 Senders judgements
It is to be shown that:

(n = 0 ∨ S (n − 1)) ∧ T (n) ∧ F∗(n)⇒ S (n)

That is, it is assumed that the type judgements and transitive flow judgements are correct in configuration
in stepn(P) and that the senders judgements are correct in configurations up to the previous configuration,
and it must be shown that the senders judgements are also true in configuration n. Let cfg = stepn(P) and
cfg′ = step(cfg).

Consider any senders judgement blkctx
send←−−− ss. To avoid triviality, suppose that ss , >s. If stat is the

statement about to execute in cfg, and b is the binding map of the main activation of cfg, then there must be a
justification that:

stat ? b B blkctx
send←−−− ss

Suppose the justification is one of S-SELF, S-LIT, S-SEL, S-VAR, S-NEW, or S-BLOCK. Then,
stat is not a message-sending statement and the judgement is true. If the justification is instead one of
S-SEND-TRIV or S-SENDVAR-TRIV, then the main activation of cfg′ cannot be an activation for blk; blk

8.3. MAIN THEOREM 115

is not the block for a method. Similarly, if the justification is S-BEVAL-TRIV, then the main activation will
not be for a method, whereas blk is for a method.

If the justification is S-SEND-BADSELECTOR, then the main activation of cfg′ must be for a method
other than blk’s method; the selectors do not match.

Suppose then that the justification is S-SEND-BADRECV. Since, by assumption, type judgements are
correct, the receiver object for the send must be a member of type trcvr. By assumption, the method of blk is
not a method that may be invoked by any member of trcvr, and thus the method of cfg′ must not be the method
of blk.

If the justification is S-SEND, then the statement and context are in ss and thus the judgement is correct.
Suppose the justification is S-SENDVAR. Then, by the Flow Position of Selectors Lemma, the only

selector objects in all objects(cfg) that match the selector of bs’s method are within the flow position fsel as
calculated in the assumptions of S-SENDVAR. If fsel includes no variable flow position matching selvar and
the current activation, then the selector sent by this sendvar execution cannot match bs’s method. Further,
just as with S-SEND, if tr does not include any objects such that the sendvar could invoke bs’s method, then
this sendvar execution cannot invoke bs’s method. Under all other circumstances, there will be a tuple in ss
that matches the current activation of cfg. In any of these cases, the senders judgement is still correct.

If the justification is S-BEVAL, then the proof parallels that for S-SENDVAR, only using the Flow Posi-
tion of Blocks Lemma instead of the Flow Position of Selectors Lemma.

8.3.5 Type judgements
It is to be shown that:

T (n) ∧ R(n) ∧ S (n)⇒ T (n + 1)

That is, it is assumed that the type judgements and responders judgements of J are true for configuration n,
and it is also assumed that the senders judgements of J are true in configurations 0 . . . n. It must be shown
that these assumptions are sufficient to imply that the type judgements remain true in configuration n + 1.

Let cfg = stepn(P) and cfg′ = stepn+1(P). Consider any type judgement var :ctx type ∈ J . By assump-
tion, this judgement must be justified by some justification rule.

If the judgement is justified by JUST-PRUNE-TYPE, then type = >. Since all objects are members of
this type, the judgement is correct.

If JUST-CTX rule is used to justify the judgement, then the result is true tautologically. If a context
matches an activation in a configuration, then any variable read in that activation must yield an object in the
type specified by the activation.

The only other possible justification is JUST-ONE. The rest of this section assumes that the judgement is
justified with JUST-ONE, and thus that there is a justification that the judgement accounts for each statement
in the program.

Suppose that var is a parameter. If the statement about to execute in cfg is not a send, beval, or sendvar
statement, or if the current block is about to return a value, then the set of objects bound to var in cfg′ will
be a non-strict subset of the objects bound to var in cfg. To see this, observe that write var never modifies
a parameter binding, and thus the only way to bind a new object to var is to create a new activation. In none
of these cases is a new activation created.

Three cases remain if var is a parameter. Suppose first that the statement about to execute is:

ll := send(lrcvr, sel, l1 . . . lm)

This statement can only be accounted for by T-SEND, which in turn requires that one of the rules T-SEND-S
and T-SEND-S-TRIV is used to justify that the judgement accounts for the execution of this send statement.
T-SEND-S-TRIV cannot actually be used in this case, however, because it requires var not be a parameter.
Thus T-SEND-S must have been used. T-SEND-S requires that a senders judgement has been justified for
var’s method, and by assumption this judgement must be correct for cfg. Thus if var’s method is the main
method of cfg′, there must be a tuple (stat, ctx) among the senders that have been found, where stat is the

116 CHAPTER 8. CORRECTNESS OF DDP

statement about to execute and ctx matches the main activation of cfg. T-SEND-S thus requires that there has
been a type judgement for the relevant argument of the send statement. By assumption, that type judgement is
correct in cfg. Since T-SEND-S requires that type subsume this type, and since by assumption type subsumes
the type of var in cfg, type must also subsume the type of var in cfg′.

The final two cases where var is a parameter are those where the statement about to execute is a beval

or sendvar statement:

ll := beval(lb, l1 . . . lm)
ll := sendvar(lrcvr, selvar, l1 . . . lm)

In both cases, the reasoning exactly parallels that for send statements.
Now suppose that var is not a parameter.
Suppose the statement about to execute is:

l := self

The semantics of this statement are that the current receiver is written into variable l.
There must be some justification that the judgement accounts for this statement. If the justification is by

T-SELF-TRIV, then var , b[l]; since Mini-Smalltalk is statically bound, then also var , dynlookup varP(cfg, act, l).
Thus, by the Writing Variables Lemma, the judgement remains true in cfg′.

If, however, var = b[l], then the justification must be by T-SELF. Suppose that ctx matches the current
configuration; otherwise the Writing Variables Lemma is enough to prove that the judgement remains true
in cfg′. By the assumptions of T-SELF, type must be a supertype of the intersection of two types: a cone
type for the class the method belongs to, and ctx[self]. By the Semantic Sanity Lemma, the current receiver
must in fact be an element of the cone type. Further, by assumption, the current receiver is an element of type
ctx[self]. Since the receiver matches both types, it also matches the intersection of those types, as systematic
inspection of the definition of meet for types (Figure 6.6) and contexts (Figure 6.9) will verify. Thus, again
by the Writing Variables Lemma for Types, the type judgement remains correct in configuration stepn+1(P).

Next, suppose that the statement about to execute is:

l := l′

If var is not l, the variable being written, or if ctx does not match cfg, then the Writing Variables Lemma
implies that the type judgement remains true. These two trivial cases appear for every statement type below,
and since the proof is the same, it will not be repeated.

The remaining case is that var is l, the variable that is written. There must have been a T-VAR justification
used to account for this statement, in which case, type will be a supertype of some type′ where l′ :dctxe type′ ∈
J . Since the type judgements of J are assumed to be true for cfg, it must be that the object read from l′ is in
type′. Thus the object is also in type, and the Writing Variables Lemma implies that the judgement remains
correct.

Next, suppose that the statement about to execute is:

l := new cname

The object written will be of class cname. If var is bound to l, then T-NEW will have been used, and var will
include the class type of cname and thus will include the newly created object.

Next, suppose that the statement about to execute is:

l := block

A new closure is created. If var is written, then the type judgement will have been justified by T-BLOCK,
and type will include the type of the closure.

8.3. MAIN THEOREM 117

Next, suppose that a send statement is about to execute:

ll := send(lrcvr, sel, l1 . . . lm)

or:
ll := beval(lb, l1 . . . lm)

or:
ll := send(lrcvr, selvar, l1 . . . lm)

In all three cases, only parameters are modified, and so these cases are trivial.
Next, suppose that the current block is ending. Suppose that its retFromMethod is true and that the block

returns l. By the Send History Lemma, either execution halts, or the variable written was on the left hand side
of a send or sendvar statement of a previous execution. If var is the variable that is written, then the current
method must have been one of the mi’s considered in the T-SEND-R or T-SENDVAR-R justification for this
statement. Furthermore, the current activation must be matched by one of the contexts c(i,j). Thus, the type
returned must have been correctly predicted, and that type will be included in the type of var.

Finally, suppose that the current block is ending, that the block’s retFromMethod is false, and that the
block returns l. The proof is similar to that for method returns. The beval statement is correctly located, the
context of the current activation was one of those that was predicted, and the type of the left hand side of the
beval statement will include the type that is returned.

All cases have now been considered. The type judgements of J remain correct across an invocation of
step.

8.3.6 Simple flow judgements
It is to be shown that:

R(n) ∧ (n = 0 ∨ S (n − 1))⇒ F(n)

That is, it is assumed that the responders judgements of J are true for configuration n, and that, unless n = 0,
the senders judgements are true in configuration n − 1. It must be shown that the simple flow judgements of
J are true in configuration n.

As usual, let cfg = (act, cnt) = stepn(P), and cfg′ = step(cfg). Consider any non-nil object object with
a non-empty flow position in cfg. Also consider any subset G of the flow judgements in J such that lhs(G)
subsumes the flow position of object in cfg. It will be shown that the flow position of object in cfg′ will be
subsumed by lhs(G) t rhs(G). Since the argument holds for any G and any object, the set of simple flow
judgements in J must be correct for cfg.

First, suppose the statement about to execute is:

l := self

If act.rcvr , object, then the Writing Different Objects Lemma implies that the flow position of object in cfg′

will be subsumed by its flow position in cfg, and thus the desired property is true. Therefore, suppose that the
current receiver is object, i.e. act.rcvr = object.

Since by assumption lhs(G) subsumes the flow position of object, and since the left-hand side of a justified
flow judgement cannot be >fp or a sum flow position, there must be a flow judgement in G whose left-hand
side is a self flow position for the current method and whose context matches the current activation:

[: S cfg.act.block.meth :]ctx → f ′ ∈ G
where ctx(act, cfg)

Since this judgement has been justified, either f ′ = >fp, in which case the result is trivial, or the judgement
must be justified by JUST-ONE. Suppose it is justified by JUST-ONE. It follows from the Lexical Binding
Lemma that there must be a tuple ([[l := self]], b) ∈ bound stats(P), where b matches the static variables

118 CHAPTER 8. CORRECTNESS OF DDP

visible from the main activation of cfg. Thus, by the assumptions of JUST-ONE, there must be a justification
of:

[l := self] ? b B [: S cfg.act.block.meth :]ctx → f ′

Only F-SELF may be used to justify this assertion. Thus, f ′ must be a variable flow position for b[l]:

[: V b[l] :]dctxe v f ′

By the Lexical Binding Lemma, b[l] must be the same as the static variable found dynamically by starting
at cfg. Thus, by the Writing Variables Lemma for Flow, the flow position of object in cfg′ is subsumed by
lhs(G) t rhs(G).

Next, suppose that the statement about to execute is:

l := literal

The semantics instantiate a new object for the literal. Since the object is required to have a new contour, it
must be different from object, and thus the Writing Different Objects Lemma applies. The flow of object does
not increase after a literal statement.

Next, suppose that the statement about to execute is:

l := l′

Suppose the flow position of object includes a variable flow position for l′, in the minimum context of cfg.
(Otherwise, the flow position of object does not increase.) The subset of flow judgements must include one
judgement f → f ′ where f is a variable flow position for l′. Unless f ′ = >fp (a trivial case), the judgement
must have been justified with F-VAR. Thus f ′ must include a variable flow position for l in a context matching
cfg. Thus, lhs(G) t rhs(G) must include the flow position of object in cfg′.

Next, suppose that the statement about to execute is:

l := new l′

The flow position of object remains the same. The only flow position that increases is that of the newly
created object, and object cannot be that object because object had a non-empty flow position in cfg.

Next, suppose that the statement about to execute is:

l := block

Again, the flow positions of existing objects do not change from cfg to cfg′.
Next, suppose that the statement about to execute is:

ll := send(lrcvr, sel, l1 . . . lm)

Consider each label among lrcvr and l1 . . . lm. For each of these that is bound to object in cfg, there must
be a judgement fl → f ′l in G where fl is a variable flow position for the variable the label binds to in cfg.
These judgements must account for the statement about to execute, and that accounting must be justified by
either F-SEND-SELF or F-SEND-PARAM, both of which have the same structure. Both F-SEND-SELF
and F-SEND-PARAM require that there be a senders judgement on the statement about to execute. By
assumption, each such senders judgement is correct in cfg, and thus the method about to execute must be
among those predicted by the senders judgement. Each of these rules also requires that a flow position
corresponding to the receiver or appropriate parameter of the responding method is included in the right hand
side of the flow judgement. Thus, for each new position in cfg′ that binds object, there is a flow judgement
in G whose right hand side includes that position. Thus, all new bindings of object in cfg′ are included in
rhs(G), and thus the necessary criterion for G is met in cfg.

8.3. MAIN THEOREM 119

Next, suppose the statement about to execute is:

ll := sendvar(lrcvr, selvar, l1 . . . lm)

or:
ll := beval(lb, l1 . . . lm)

The reasoning exactly parallels that for send statements, except that for beval statements, there is no flow
into self positions.

Next, suppose that the block is ending. Suppose, to avoid triviality, that the variable varret that is being
returned from the block is bound to object. Thus, there must be some judgement f → f ′ ∈ G where f is
a variable flow position for varret in a context matching act. By the Send History Lemma, there is a state-
ment that, in a previous step of execution, invoked the method that is currently returning. There must be an
invocation of F-RETURN-SEND, F-RETURN-SENDVAR, or F-BRETURN-BEVAL to allow f → f ′ to ac-
count for returns to this statement from the current method of cfg. It is impossible that one of the trivial rules,
F-RETURN-SEND-BADVAR, F-RETURN-SENDVAR-BADVAR, or F-BRETURN-BEVAL-BADVAR, was
used, because varret is in fact among the returned variables of the current method.

All three of the non-trivial F-RETURN rules have the same pattern. They require that there is a senders
judgement in J for the returning method. By assumption, senders judgements are correct in cfg, and thus
the senders judgement required by the rule must include the statement where control is returning. Thus, the
rule requires f ′ to hold a variable flow position for the variable on the left hand side of the statement where
control is returning. Thus, f ′ includes the new binding of object, and the necessary criterion is met.

8.3.7 Transitive flow judgements
It is to be shown that:

F(n)∗ ∧ F(n)⇒ F∗(n + 1)
The assumption is that both the simple and transitive flow judgements of J are correct for steps 0 . . . n. It is
to be shown that the transitive flow judgements of J are true for steps 0 . . . n + 1.

Refer to the definition of correct sets of transitive flow goals in subsection 6.7.3. Let F be the set of
transitive flow judgements in J , and let G be any subset of F . Let object be any object in configuration i ≤ n
other than NilObj with a non-empty flow position in stepi(P). To avoid triviality, suppose that:

flowpos(object, stepi(P)) v lhs(G)

By the inductive assumption, it is known that for any j ∈ i . . . n

flowpos(object, step j(P)) v rhs(G)

It must be shown that:
flowpos(object, stepn+1(P)) v rhs(G)

Each transitive flow judgement inGmust be justified, either by rule F-TRANS or by rule JUST-PRUNE-TFLOW.
If any of them are justified by JUST-PRUNE-TFLOW, then the target of that judgement must be >fp, and
rhs(G) must also be >fp. In that case, the criterion is trivially satisfied. Thus, suppose that none of the goals
are justified by JUST-PRUNE-TFLOW, and therefore that all of them are justified by F-TRANS.

To meet the requirements of F-TRANS, for each judgement f →∗ f ′ ∈ G, there must be a decomposition
of f ′ into simple flow positions f ′1 . . . f ′p, where, for each f ′i , there must be a simple flow judgement f ′i →
f ′′i ∈ J . LetH be the set containing all of these required f ′i → f ′′i judgements but no others.

The flow position of object in stepn(P) is subsumed by lhs(H). Since it was just proven that the simple
flow judgements are correct for stepn(P), and since H is a subset of the flow judgements of J , it must be
that the flow position of object in stepn+1(P) is also subsumed by lhs(H) t rhs(H). By the construction
of H , it must be that lhs(H) v rhs(G). Since G holds only justified flow judgements, it must also be that
rhs(H) v rhs(G). Thus, the flow position of object in stepn+1(P) is also subsumed by rhs(G).

Therefore, the correctness requirement is satisfied for G and object. Since G and object are arbitrary, the
set of all transitive flow judgements in J must also be correct.

120 CHAPTER 8. CORRECTNESS OF DDP

Chapter 9

Chuck: Semantic program navigation

Chuck is a new program understanding tool for Squeak, a dialect of Smalltalk. It is both an example appli-
cation of DDP, and an exhibition of the authors’ motivation for develpoing DDP. Concretely, it extends the
Refactoring Browser [56] with new queries and windows for data-flow information.

Chuck is available on the World Wide Web and is a standard load option of Squeak.

9.1 Semantic navigation

Chuck exploits the demand-driven structure of DDP to achieve a thorough integration of data-flow analysis
into the existing development style supported by Squeak. Squeak’s code browser already includes context
menus which allow a user to highlight an item of interest in the code and then perform queries on those
items. Chuck uses the same context menus but adds additional queries to them that are answerable now that
a data-flow analysis is available.

The response to a query is not only an answer is always given in a derivation browser. The derivation
browser shows the justification that DDP found for its answer. That justification is a trace through the code
along semantic navigation paths. That is, the existing tools includes syntactic navigation paths such as the
answer to “find references to this variable.” Chuck maintains the same style of interaction for semantic
navigation paths such as “find the invokers of this method.”

9.2 Available queries

Chuck implements two new queries and two enhanced versions of standard Squeak queries. The two en-
hanced queries are used to trace call graphs statically. They are type-sensitive versions of the implementers-of
and senders-of queries. The standard implementors-of query lets a programmer find all methods whose name
matches a selection, whereas the standard senders-of query locates all message-send expressions that send
the specified message.

The enhanced implementors-of query finds only those methods that, based on DDP type analysis, might
actually respond to the selected message-send expression. As an extreme example, if a user browses to
class BasicLintRuleTest’s new method in Squeak 3.7 and selects the message send of initialize, the
standard query shows 756 potential responders. The enhanced query shows only one. Another example can
be seen by comparing Figure 9.1 and Figure 9.2.

Similarly, the enhanced senders-of query returns only those message-send expressions that, based on
type information, may invoke a specified method. To repeat the previous example in reverse, the standard
tool shows 581 possible senders of BasicLintRuleTest’s initialize method, while Chuck shows 13.
Another example can be seen by comparing Figure 9.3 and Figure 9.4.

121

122 CHAPTER 9. CHUCK: SEMANTIC PROGRAM NAVIGATION

The two new queries are used to trace data flow: type queries and forward-flow queries. A type query
lets the user select an expression or variable and then find, based on analysis information, what types the ex-
pression or variable may hold at runtime. Figure 9.5 shows the programmer asking for a type, and Figure 9.6
shows how Chuck displays the answer. Similarly, a forward-flow query lets the user find the expressions or
variables in the program that values may reach, if they start at the selected expression or variable. Such a
query is useful, for example, to see where a constant in the code is ultimately used. Figure 9.7 shows the
programmer asking for the flow of an expression, and Figure 9.8 displays Chuck’s answer.

9.3 Browsing derivations and trying harder
Chuck not only returns a judgement in response to a query, but can also return the support for a judgement.
One may point to any judgement returned, and find out the other judgements the analyzer used to reach
that conclusion. One may then recursively query those judgements to see how they, in turn, are justified.
Figure 9.6 demonstrates this functionality.

Chuck’s derivation browser provides two additional navigation links beyond the explanations. Support
for a judgement usually involves reference to other elements of the source code. By selecting a judgement,
the programmer can cause the code browser to jump to the relevant source code in the standard code browser.
Again, Figure 9.6 demonstrates this functionality; the user is about to view the code underlying one of the
judgements Chuck has produced.

Second, the user may select any judgement and ask the analyzer to try harder on that particular goal, i.e.
to use a higher pruning threshold. This ability lets Chuck give fast, imprecise answers by default, yet still
allow users to allocate more time for a question if the question is important enough, and the first answer
imprecise enough, to warrant the extra resource expenditure. The user in Figure 9.9 is requesting that the
main goal be tried again. In Figure 9.10, the user specifies that greater resources should be used. The result
is Figure 9.11, which is a precise result thanks to the increased resources.

9.3. BROWSING DERIVATIONS AND TRYING HARDER 123

Figure 9.1: The standard tools show the methods that potentially respond to a message-send statement.

Figure 9.2: Chuck only displays potential responding methods that are consistent with its type inferences.

124 CHAPTER 9. CHUCK: SEMANTIC PROGRAM NAVIGATION

Figure 9.3: The standard tools show the statements that potentially invoke a method.

Figure 9.4: Chuck only displays potential senders that are consistent with its type inferences.

9.3. BROWSING DERIVATIONS AND TRYING HARDER 125

Figure 9.5: A user asks for the type of a variable.

Figure 9.6: Chuck displays the type of a variable.

126 CHAPTER 9. CHUCK: SEMANTIC PROGRAM NAVIGATION

Figure 9.7: A user asks where a variable’s contents flow.

Figure 9.8: Chuck displays the locations where a variable’s contents flow.

9.3. BROWSING DERIVATIONS AND TRYING HARDER 127

Figure 9.9: Sometimes Chuck fails due to lack of resources.

Figure 9.10: The user may “retry goal” and specify that more resources should be used the next time.

Figure 9.11: This time, the greater resources allow Chuck to infer a precise type.

128 CHAPTER 9. CHUCK: SEMANTIC PROGRAM NAVIGATION

Chapter 10

Empirical validation of DDP

The DDP algorithm has been evaluated empirically. There are two claims that the experiments attempt to
validate:

• The algorithm scales to produce useful results on real programs with hundreds of thousands of lines of
code.

• Subgoal pruning gives significant improvements in the performance of the algorithm.

Additionally, the experiments attempt to determine good choices of the pruning threshold.
The first claim is the most interesting and is the bulk of the thesis. It shows that there is an effective

algorithm for finding type information in large dynamic programs.
The second claim is that subgoal pruning is worth the complexity it adds to the algorithm. A possible

alternative is to only allow pruning the primary goal; the algorithm would be simpler, but it is expected that
the precision would decrease.

This chapter describes the experiments that have been performed, gives the results from those experi-
ments, and analyzes those results.

10.1 Issues

10.1.1 Better versus good
Most researchers experimentally validate a program analysis by implementing it and then comparing one
system that uses the analysis to another that does not. Such researchers might compare the results of the
analysis directly to the result of another analysis. Alternatively, such researchers may modify an application
to take advantage of information from the analysis and then compare the performance of the application
when it does or does not use the analysis. For example, they might implement a dead code remover using
information from the analysis, and then measure what percentage of a sample program is removed by the
dead code remover.

Neither of these approaches work well for testing DDP.
First, there truly are no competing algorithms to compare against, as described in the related works sec-

tion. It would be possible to implement competitors myself, but there would still be a question of whether my
implementations were at fault instead of the general algorithm. No serious contender has been implemented
for Smalltalk itself, and thus any existing algorithms would need some amount of adaptation. Challengers
could continuously request variations and improvements on the adaptations, and the question would always
remain whether the next improvement might in fact make the algorithm practical.

Further, I know of no existing applications, such as compilers, that can take advantage of type inference.
It would be possible to implement such applications, but that requires a large amount of work.

129

130 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

To put it briefly, this analysis area is simply too new for comparative validation to be effective.
Thus, instead of comparing DDP to other algorithms, the experiments evaluate whether the algorithm

performs usefully well for some applications, not whether it performs better than some other algorithm.
The next two sections discuss what usefully good performance would mean for DDP.

10.1.2 Performance of demand-driven algorithms
DDP, like all demand-driven algorithms (see Chapter 2), finds one fact or a small number of facts for each
execution. In contrast, exhaustive algorithms find a complete set of facts about an entire program. Demand-
driven algorithms are typically slower for analyzing entire programs, but faster for analyzing small portions
of programs.

When measuring a demand-driven algorithm, it is the performance per fact inferred that matters. The
experiment thus measures performance per inference instead of the performance for an entire program.

10.1.3 Performance of type-inference algorithms
There are two aspects of performance of a type-inference algorithm: speed and precision. An algorithm with
better speed finishes more quickly. An algorithm with better precision produces inferences that are more
specific, e.g., “x is a SmallInteger” has better precision than “x is a SmallInteger, a LargeInteger, or a Float”.

Measurement of speed is straightforward: simply record the amount of time required for the program to
complete. An algorithm that takes half the time as another performs twice as well as the other.

Measurement of precision might be difficult, at least in principle. What is a precise type inference? What
does it mean for a type to be, say, twice as precise as another?

In practice, experience with DDP suggests that most results strike observers as either very precise or
very imprecise, with uncertain cases being marked as imprecise. This strategy is consistent with the goal
of verifying the algorithm to produce usefully precise results for program-understanding applications. This
strategy does not produce a verified, objective measure of precision, but does give a conservative measure of
precision that can be used to verify that the algorithm passes a certain threshold of precision.

The following specific rules were used to classify each type inferred for a variable:

• > is imprecise.

• {|UndefinedObject|} is precise. It means that the variable is never assigned a value, and thus it only holds
nil when the program runs.

• Any type that is the union of {|UndefinedObject|} with a simple class type, selector type, or block type,
is precise.

• A union type is precise if, according to human analysis, at least half of its component simple types may
arise during execution. For this analysis, the exact values of arithmetic operations are not considered;
e.g., any operation might return a negative or positive result, and any integer operation might overflow
the bounds of SmallInteger. Notice that this is the only rule where human analysis is required; the other
rules leave no room for interpretation.

• If none of the above rules apply, then the type is imprecise.

10.1.4 Usefulness
Some correct type inferencers are trivial and useless. For example, an inferencer could report type > for
every query it is posed. Since every value is within type >, such an answer is always correct, and thus the
inferencer is correct as well. Nevertheless, such an inferencer is useless. A compiler writer would never use
such an inferencer even if it was fully implemented and only required a single function call to invoke. A tool

10.1. ISSUES 131

author would never waste screen space on an “infer type” button that invoked such an inferencer. Correctness
is not enough for a useful algorithm.

DDP is more sophisticated than this trivial algorithm, but is it truly useful? Perhaps it is equally useless,
only in a more complicated way? How can one distance DDP from the trivial algorithms? Since it is impos-
sible, as discussed in the previous section, to show that DDP is better than some other algorithm, one cannot
simply show that DDP is better than some existing non-trivial algorithm. Instead, one must show that DDP
is sufficiently good that it is non-trivial. The present work shows that DDP is sufficiently good that it may be
called useful.

Usefulness is a sufficiently strong claim to establish DDP as one type inference algorithm that finds a
non-trivial amount of correct type information. Given the long history of type inference efforts, this level of
performance is high enough to establish DDP as a first algorithm in its domain to compare against.

Usefulness, however, is not a strong claim. It is not a claim that the tool will be useful for all purposes or
even most purposes. In fact, DDP does not appear useful for dead code removal. It is also not a claim that
DDP is extremely useful, but instead only that it is somewhat useful, even for applications where it is useful
at all.

From the opposite point of view, to disagree with a weak claim is to make a strong claim in the opposite
direction. The opposite of the claim sought in the present empirical work, is the claim that DDP is completely
useless for all purposes. Readers should be careful before rejecting the weak claim of usefulness for some
purpose, lest you commit yourself to accepting a strong claim of complete uselessness.

Trying to establish usefulness causes complications. One complication is that usefulness depends on the
effort a particular user is making. A screwdriver is very useful for someone who wants to screw things to-
gether, but quite useless for someone who wants to prove a mathematical theorem. To address this complica-
tion, the present work examines multiple typical applications of type inference and evaluates the algorithm’s
usefulness for each of these applications. The hope, needed to satisfy the claim in the thesis statement, is to
find DDP useful for at least one typical application.

Another complication is that usefulness is not a sharp criterion. Much like with beauty, wealth, and
precision, there is no obvious threshold for usefulness. Different users will simply have different standards.
To address this difficulty, this document invites readers to speculate on levels of performance they believe
would be sufficient for a type inferencer to be deamed useful. Try make that decision before reading the final
performance data; otherwise, you will lose some of your objectivity.

Different readers will choose different standards of performance. Some, doubtless, will choose a high
enough standard that DDP does not meet it. Such readers must conclude that the present work merely moves
the field closer to a useful algorithm, without yet achieving the grail of a usefully precise type inferencer. An
effort is made, below, to specify thresholds that most readers will agree are sufficient.

Overall, usefulness is not a convenient criterion. Nevertheless, it is an important attribute of any tool,
especially a tool that is claimed to be a first success in its (narrow) field. It is worth making the effort to
address it. To contrast, it would be no improvement of the present work to omit discussion of the topic
of usefulness, simply because it is difficult to talk about or because the conclusions are not as rigorously
established as a proven mathematical theorem. It would be no improvement to focus all efforts on the clearest
problems. Sometimes, important issues are hard to discuss.

10.1.5 Performance criteria for usefulness

This section provides some target thresholds we believe are sufficient to call a type inferencer useful. The
reader is invited to choose thresholds of your own before reading the author’s choices.

A threshold is specified for each of the following applications:

• Programmer queries. A human programmer trying to understand a program, asks the tool questions as
they occur.

• Optimization of individual modules.

132 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

• Optimizations that require a small subset of the possible facts. For example, a compiler might want
points-to analysis only for arrays that are indexed from within loops.

• Dead-code removal.

For the first three applications, the performance of the algorithm on an entire program is irrelevant. For
the last, the performance on the entire program does matter, but for consistency the target will be re-calculated
as a per-query target.

• Programmer queries: Each fact must require no more than one or two minutes to find. Preferably they
require only a few seconds. Precise information must be found for at least one quarter of the queries,
or programmers are unlikely to use the tool.

• Module optimization: A set of facts for an entire module requires no more than an hour, and preferably
less than a minute. Precise information must probably be found for at least one tenth of the queries or
so, or the analysis will not be worth the effort.

• Targeted optimizations: The requirements are variable. They depend on how small a subset of the
facts the optimizer needs and on how large of a program fragment the optimizer is targeted at. Again,
probably at least one tenth of the queries should yield precise information.

• Dead-code removal: A type inference for every message-send expression in the entire program must be
found in no more than a week, and preferably no more than a day. Assuming there are on the order of
one million send statements in the program, each query must be answered in one second. It is unclear
how many queries need precise information; perhaps one tenth would be sufficient, though one would
prefer a much higher precision.

These performance goals are not sharply defined—e.g., if it takes two hours instead of one to analyze a
module, the algorithm is still worth something—but they give a rough idea of what level of performance is
needed for a demand-driven algorithm to be useful for various applications.

10.2 Alternative experimental designs
There are a number of experiments that could be performed on DDP. Since these experiments are typical in
the field of program analysis, it is worth discussing why those experiments have not been performed on DDP.

The next section describes the experiments that have actually been performed on DDP.

10.2.1 Comparison to competitors
A very common approach for experimentally testing a program analysis is to directly compare the perfor-
mance of the algorithm to the performance of other algorithms that solve the same problem. If DDP performs
better than the competitors, then it would show that DDP is performing well enough to be interesting.

As described in Chapter 2, there are no reported analyses for a dynamic language in such large pro-
grams, and there are no context-sensitive algorithms that even appear to scale. There are, however, context-
insensitive algorithms that have linear complexity and thus should scale in principle. It would be possible to
implement one of the linear-complexity algorithms and thus do a direct comparison.

The primary difficulty with this approach is that the linear-complexity algorithms are still linear in the
program size in both time and memory. My efforts so far to modify such algorithms for Smalltalk and
run them against a sample large program, have resulted in the machine paging constantly to disk before
the algorithm even finished generating all of the constraints, on a machine with 512MB of RAM. More
engineering work and better machines, might produce a practical implementation, but the required effort
appears to be substantial.

10.2. ALTERNATIVE EXPERIMENTAL DESIGNS 133

An additional difficulty is that these algorithms are not described for Smalltalk. Thus, while the general
approach of the algorithms transfer, some cleverness is still needed. As one example, there is no syntax in
Smalltalk for instance creation; instead, one sends the #new message to a class object. This is no challenge
at all for a context-sensitive algorithm, but without care, a context-insensitive algorithm would conclude that
all senders of #new return the same type. Likewise, blocks are invoked by a message send, not by syntax,
and those executions as well should get some care in a serious implementation. Thus, it requires considerable
work and cleverness to transfer any of the existing algorithms to Smalltalk, and for all of that effort, it is
unclear which algorithms will in fact produce results at all to compare against.

10.2.2 Comparison to competitors in other languages
Instead of porting program analyses to Smalltalk, an experimenter could port DDP to other languages. In
particular, one could target the Cecil language [17], and thus perform a direct comparison against the mature
analyses that are part of the Vortex compiler for Cecil. If DDP performs better than the other analyses, then
the experiment would show that DDP is performing well enough to be interesting.

The first difficulty with this approach is that it again requires a substantial implementation effort. The
experimenter must learn the alternative language thoroughly enough to perform analyses in it, adapt the
analysis to work in that language, and then fully implement the analysis.

The second is that it renders the defense of the thesis less cohesive. It would be perfectly acceptable to this
researcher to prove that DDP works in some other dynamic language, e.g. Scheme or Cecil. However, the rest
of the defense speaks to the thesis that DDP works in Smalltalk. Most significantly, the proof of correctness
(Chapter 8) refers to Smalltalk, and the programming tool (Chapter 9) is implemented in Smalltalk. Changing
the thesis, requires not only re-implementing DDP itself, but also performing again most other components
of the defense of thesis.

10.2.3 Performance for smaller programs
It would be possible to use smaller Squeak programs, to implement competitors known to be effective in
smaller programs, and then to compare the performance of DDP to the competitors. If DDP produces pre-
cise results in smaller programs, then the experiment would show that DDP is effective in small programs.
Additionally, the experiment would suggest that DDP would also produce precise types for larger programs.
One would need to perform an additional experiment to show that DDP does complete in reasonable time for
larger programs.

There are three difficulties with this approach.
First, it requires a substantial implementation effort. The competing algorithms are not implemented in

Smalltalk, and thus they must be modified to work in Smalltalk and also implemented from scratch.
Second, this experiment does not stand alone. In order to learn from this experiment, one must perform

an additional experiment to learn (hopefully) that DDP does terminate in reasonable time on larger programs.
Without that experiment, then there is no evidence regarding DDP’s effectiveness on larger programs.

Finally, the experiment provides only indirect evidence about the desired thesis. This author is interested
in larger programs than have been proven to be supported by any published algorithm, but the experiment
reports results on small programs. If one has limited time for experiments, then surely one should seek an
experiment that gives direct evidence.

10.2.4 Performance of applications
Instead of comparing the analysis against other analyses, it would be possible to use the analysis to improve
some application such as a compiler or a dead code remover. Then, one could compare the performance of
the algorithm with DDP to the performance it attains without it. If the applications perform significantly
better when using DDP than when not using it, and if the applications do not take an unreasonable amount of
time when they consult DDP, then the experiment would show that DDP is performing usefully well.

134 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

The main difficulty with this approach is that a substantial implementation effort is required. There is no
optimizing compiler for Squeak, the dialect of Smalltalk used in this research. Writing an entire optimizing
compiler is clearly an overly extreme effort if the only goal is to validate a program analysis. Porting to
other Smalltalks is a significant effort, as well. Further, it is unclear which Smalltalk to port to. Cincom
VisualWork1 has a good runtime, but it is unclear whether its owner would let a researcher from the general
public access that runtime system. Self [70, 62] has a good runtime, but the language is different enough to
run into the porting difficulties described in the previous section.

Squeak does have a simplistic dead code remover. However, DDP as it stands is not organized for effective
dead code removal, because the algorithm has been studied for the application of program understanding.
Dead code removal requires analyzing all of the program that is live, and DDP per se is more efficient at
targeting individual expressions. As discussed in Chapter 12, it remains future work to modify DDP to be
effective in contexts where a large number of queries are being submitted to it. That effort is too substantial to
perform merely for the sake of an experimental effort. Further, it does nothing to test DDP for use in program
understanding tools, which is this researcher’s primary interest in type inference.

Finally, Squeak does include several code browsers, and those code browsers include various queries used
for program understanding. Some of these queries can be improved by using DDP, and one could perform
an experiment to see how much, if any, those queries are improved if they use DDP. This experiment would
produce the same strength of justification as the experiment actually performed, with the same amount of
effort, and thus only smaller matters decide between them. I chose the experiment described below, because
it gives more direct evidence, and because it seems like a better contribution to produce a tool that solves a
problem not known to be solvable, than to improve on an existing tool.

10.2.5 Summary

In summary, all of these approaches require a substantial amount of extra implementation work. Additionally,
most of the approaches cause difficulties with the thesis. Either they require a change to the thesis that would
render the defense less cohesive, or they require a change to a thesis that is less interesting to this researcher.

10.3 Actual experimental design

This section describes the experiment actually performed. It directly addresses the two claims described at
the beginning of this chapter.

10.3.1 The program code tested

The experimental executions include queries on Squeak 3.7, a Smalltalk system that, when the type inferencer
is loaded, has 358,872 non-blank lines of code, 2485 classes, and 48,715 methods. The program includes
a large variety of software such as a web browser, an Internet Relay Chat [50] client, a port of the Alice
system [18] for end-user programming in three-dimensional spaces, and the platform-independent portion of
the Squeak interpreter itself [38, 33].

The experiment infers a type for each instance variable in nine components of the program, as summarized
in Table 10.1. A total of 765 variables are analyzed. The components cover a variety of application domains
and a variety of authors.

The algorithm is given no information about where execution might begin or about which portions of the
code base constitute an application or a module. Thus, the algorithm sees a single large 300,000-line program
even though each query will analyze only a subset of the program.

1 http://smalltalk.cincom.com

http://smalltalk.cincom.com

10.4. SUMMARY OF RESULTS 135

Instance
Name variables Description
rbparse 56 Refactoring browser’s parser
mail 73 Mail reader distributed with Squeak
synth 121 Package for synthesis and manipulation of

digital audio
irc 114 Client for IRC networks
browser 32 Smalltalk code browser
interp 173 In-Squeak simulation of the Squeak virtual

machine
games 135 Collection of small games for Morphic GUI
sunit 10 User interface to an old version of SUnit
pda 51 Personal digital assistant

Table 10.1: The components of the program analyzed.

10.3.2 The trials
Each trial uses the implementation to infer a type of one variable. The trials vary the following parameters
exhaustively:

• They choose a variable from the instance variables in the packages that are tested.

• They choose a pruning threshold that is either infinite or that ranges among 12 values from 50-10,000.
If an infinite threshold is chosen, then no pruning is performed; instead, the algorithm is executed for 5
minutes on each query. If no result has been found within the time limit, then a result of > is returned.
This variation is a “drop dead” timeout.

For each trial, the amount of time and the inferred type are recorded. Followup human analysis classifies
each inferred type as precise or imprecise using the approach described above.

10.3.3 The machine
The trials are executed on a machine with an Intel Celeron CPU, clock speed 2.40 GHz, and 512 MB of
RAM.

10.4 Summary of results
The measured speed of the inferencer is tabulated in Table 10.2 and summarized as a graph in Figure 10.1.
The measured precision of the inferencer is tabulated in Table 10.3 and summarized in Figure 10.2. An
overall speed-precision performance envelope is shown in Figure 10.3.

The following types, which are obviously precise, comprise 93% of the inferences that were classified as
precise:

• (57.6%) {|C|} t {|UndefinedObject|}, for some class C.

• (30.5%) {|UndefinedObject|}, i.e., the variable is never initialized from the code.

• (9.4%) {|True|} t {|False|} t {|UndefinedObject|}
• (5.4%) {|SmallInt|} t {|LargePosInt|} t {|LargeNegInt|} t {|UndefObject|}2

2Class names have been abbreviated.

136 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

50 150 300 500 1k 1.5k 2k 3k 4k 5k 7.5k 10k inf
rbparse 0.9 2.0 4.0 5.6 10.1 15.0 20.5 27.3 48.0 43.9 73.2 120 155
mail 1.8 3.6 7.9 8.2 14.4 19.6 27.3 37.1 51.0 85.9 89.6 140 219
synth 1.0 3.5 5.8 7.9 12.5 21.3 25.1 35.5 41.9 55.8 123 153 375
irc 0.45 1.5 2.0 2.9 4.8 7.0 6.9 10.6 42.7 41.4 45.7 48.1 62.3
browser 0.82 3.6 6.7 10.1 15.0 20.4 27.8 68.3 52.4 60.1 133 167 207
interp 0.46 1.2 5.1 4.8 8.4 11.3 16.3 24.0 27.9 31.8 51.8 63.5 232
games 0.82 2.2 3.5 5.7 10.8 15.9 19.4 27.8 34.0 36.6 62.1 73.9 161
sunit 1.0 1.5 4.4 4.9 11.2 14.4 11.4 29.6 31.9 36.6 52.1 76.1 47.4
pda 0.68 2.9 5.1 7.7 18.2 27.3 39.5 50.7 67.0 72.0 115 199 271
Overall 0.83 2.3 4.7 6.0 10.6 15.6 20.2 29.7 40.8 47.8 77.0 102 209

Table 10.2: Speed of the inferencer. Entries give the average speed in seconds for inferences of instance
variables in one component, using the given pruning threshold. For example, when the pruning threshold
is 50, the rbparse package requires an average of 0.9 seconds to infer a type for one of its variables. The
“inf” column is for executions where no pruning was performed, and instead the implementation was given
5 minutes per variable to infer a type if it could. The “overall” entries on the last line are averaged across
all individual type inferences; thus, they are weighted averages of the component averages, weighted by the
number of instance variables within each component.

50 150 300 500 1k 1.5k 2k 3k 4k 5k 7.5k 10k inf
rbparse 25.0 28.6 28.6 28.6 30.4 30.4 32.1 32.1 33.9 32.1 33.9 33.9 30.4
mail 28.8 34.2 37.0 38.4 41.1 37.0 37.0 39.7 37.0 41.1 37.0 38.4 31.5
synth 28.1 31.4 38.8 38.8 38.8 40.5 40.5 43.0 43.8 43.0 46.3 47.1 34.7
irc 69.3 72.8 75.4 76.3 77.2 78.1 79.8 81.6 81.6 80.7 79.8 80.7 77.2
browser 9.4 12.5 12.5 12.5 15.6 15.6 15.6 15.6 18.8 15.6 12.5 15.6 9.4
interp 17.9 21.4 22.0 22.0 22.0 25.4 29.5 31.8 31.8 31.2 31.8 31.2 29.5
games 51.1 51.1 56.3 60.0 60.0 62.2 71.1 74.1 73.3 73.3 74.1 74.8 61.5
sunit 40.0 50.0 60.0 50.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0
pda 19.6 21.6 23.5 23.5 25.5 33.3 33.3 35.3 35.3 37.3 35.3 37.3 21.6
Overall 34.6 37.6 40.7 41.5 42.4 44.1 47.0 49.1 49.1 49.0 49.1 49.8 42.3

Table 10.3: Precision of the inferencer. Entries give the percentage of inferred types considered by a human
as “precise” for instance variables in one component using one pruning threshold. For example, when the
pruning threshold is 50, the rbparse package gets precise types inferred for 25.0% of its variables. The
“inf” column is for executions where no pruning was performed, and instead the implementation was given
5 minutes per variable to infer a type if it could. As in Table 10.2, the “overall” entries are averaged across
inferences, not averaged across the averages in the table.

10.4. SUMMARY OF RESULTS 137

Figure 10.1: Graph of the inferencer’s speed. The horizontal axis is the pruning threshold, and the vertical
axis is the average time required for each inference. The thick black line gives the overall average, while the
gray lines each give an average for one component.

138 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

Figure 10.2: Graph of the inferencer’s precision. The horizontal axis is the pruning threshold, and the
vertical axis is the percentage of the inferences hand-classified as precise. The thick black line gives the
overall percentage, while the gray lines each give a percentage for one component.

10.4. SUMMARY OF RESULTS 139

Figure 10.3: Graph of speed-precision envelope. This graph combines the thick, black summary lines
from Figure 10.1 and Figure 10.2, thus showing the overall performance envelope of the DDP prototype.
Additionally, the overall performance of the drop-dead variation, i.e. the “inf” columns from Table 10.2 and
Table 10.3, is summarized by the single data point to the right of the the main data in this graph. Note that
the drop-dead variation is on the graph and is a practical algorithm for some applications, but its performance
is worse than the performance envelope of DDP.

140 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

10.5 Analysis and conclusions

The experimental results lead to a number of conclusions.
First, the level of pruning matters. Varying the pruning threshold causes the precision to vary from 34.6%

to 49.8%, and the average time required per inference to vary from 0.83 seconds to 209 seconds. The pruning
threshold is certainly an effective knob for tuning the algorithm, both for speed and precision.

Second, there are two pruning thresholds that seem to give a useful level of both speed and precision. A
tight pruning threshold of 50 gives high speed (0.83 seconds) and high enough precision to be useful (34.6%).
Such a choice would be good for all applications described in subsection 10.1.5: program understanding,
targeted optimization, and (barely) dead code removal. Such a choice seems especially sensible for program-
understanding tools, where a user is waiting and every second matters. A threshold of 2,000 gives reasonable
speed (20.2 seconds) and a higher precision (47%). Such a choice would be good for an optimizing compiler,
which can often afford to spend several seconds if it gives a better compilation. Higher thresholds than 2,000
continue to slow the inferencer down but do not give much higher precision; the maximum precision attained
in the experiments was 49.8% percent. No setting of the threshold gives performance sufficient for practical
dead-code removal.

Third, subgoal pruning is valuable in general. Goals after the first few thousand do not substantially
increase precision (Figure 10.2), but they steadily increase time (Figure 10.1). Non-pruning demand-driven
algorithms implicitly allocate a number of goals only limited by bounds such as the size of the program and
the richness of the domain of goals.

Fourth, subgoal pruning appears to focus the algorithm’s effort more effectively than a time-based timeout.
The “inf” columns of Table 10.2 and Table 10.3 show that a timeout approach can find a large number of
precise types (42.3%), but it requires a large amount of time to find them (209 seconds per query). One
could instead use subgoal pruning with a threshold of 1000, and thus find slightly more types that are precise
(42.4%) while requiring an order of magnitude less time per query (10.6 seconds). Alternatively, one could
choose a pruning threshold of 10,000, thus finding significantly more types that are precise (49.8%) while
requiring roughly half of the time per query (102 seconds). The difference is shown visually in Figure 10.3.
Thus, drop-dead timeouts provide an alternate but inferior technique to subgoal pruning for making context-
sensitive data-flow analysis practical in a Smalltalk-like setting.

Finally, there is one anomaly in the data. Some of the trials with no pruning require more time than the
300-second maximum. The number of such trials is not yet known, and the amount of overrun is not yet
known, either. It appears that the implementation, for some reason, does not always stop immediately at 300
seconds. A better implementation would fare better in the no-pruning trials. The data should be re-analyzed,
with all timings greater than 300 seconds being replaced by the 300 seconds that an improved implementation
would have achieved.

10.6 Informal notes

Perusal of the full experimental results, published separately, provides various intuitions about the perfor-
mance of the system. We briefly share some of those intuitions in this section. Much of the future work in
Chapter 12 consists of exploring these intuitions more fully.

A large amount of code is not overtly polymorphic. The best-performing packages—IRC, Morphic
Games, and SUnit—include a large number of variables that are ultimately assigned an expression such as
“FreeCellBoard new”. While program-analysis researchers enjoy considering sophisticated code patterns,
a large amount of practical code uses simpler idioms. The present work thus reemphasizes an observation
from analysis researchers tracing back to at least Knuth’s study of typical FORTRAN programs [44].

The best-performing package, IRC, additionally has many unused variables. Whenever DDP is queried
for the type of an unused variable, it instantly infers a type of {|UndefinedObject|}. The presence of unused
variables further emphasizes the above observation about simple code being surprisingly common.

On the other end of the spectrum, the Browser package provides a number of examples that use both

10.7. A PRUNING SCHEDULE FOR INTERACTIVE USE 141

integer arithmetic and round-trips through the highly polymorphic GUI libraries, in particular the class
PluggableListMorph. In principle DDP has enough polyvariance to be effective in this case, but for some
reason the analysis is not succeeding. Therefore, the browser package provides excellent example code to
investigate for future improvements of the justification rules.

Finally, it should be noted that examples appearing to be simple to a human often require at least one
surprisingly sophisticated and precise step in the derivation. A salient example is the connection variable
of class IRCChannelListBrowser. The values stored into this variable are ultimately created by either
the expression self in a method of class IRCChannel or the expression “IRCConnection new.” Both of
these expressions are trivial to analyze, but the path between those expressions and the connection variable
include the parameter of a method named initialize:.

Finding the type of the parameter to this initialize: method requires analyzing 45 potential senders
of initialize: and determining that only one of them is feasible. If the analyzer failed in this step of the
derivation and considered 2 of the 45 to be feasible, then the inferred type would almost certainly at least
double. Additionally, each additional feasible sender adds an extra chance for the analyzer to fail and return
type >—a substantial risk in an analysis that finds precise types for top-level queries roughly 30% to 50% of
the time.

10.7 A pruning schedule for interactive use

The experimental results shed light on a new pruning schedule for interactive use such as in Chuck (Chap-
ter 9). The trials all use a simple, fixed pruning threshold. For interactive use, it appears useful to instead
have a pruning schedule, where the pruning threshold decreases as time goes on.

With the algorithm from section 4.8, the choice of fixed pruning threshold gives a rough control on the
time required and the precision obtained. This control is loose. For example, as reported above, a threshold
of 3000 nodes yielded an average time of 30 seconds per query, but the slowest of those queries required over
10 minutes.

For interactive use, these occasional large response times are not acceptable. We would prefer to provide
consistently fast responses even if the responses are not as precise as possible. A crude way to obtain consis-
tently fast responses would be simply to halt the algorithm if a response has not been found within some time
limit and report failure. That is, run the analysis, and if it requires more than, say, five seconds, terminate it
and report that no information was found.

A more graceful degradation of precision than this approach may be obtained by taking advantage of
the structure of the DDP pruning algorithm. The tool begins by using a pruning threshold of 3000. If no
result has been found within three seconds, then the pruning threshold is decreased to 50 and the algorithm is
given two more seconds to complete. Usually the algorithm finishes in a fraction of a second with a pruning
threshold of 50, but in the rare case that it requires two or more seconds, the algorithm is terminated after
all—by lowering the threshold to 1—and the system reports that no information was found.

Further analysis of data from the above experiments show that the cruder approach, that of using a thresh-
old of 3000 and then stopping after five seconds, yields an answer—precise or imprecise—to 40% of type
queries. The remaining 60% would necessarily have to be answered with the maximal type, >, because DDP
does not provide sound information if it is halted early. The more gradual approach, with a threshold of 3000
for 3 seconds followed by 50 for 2 seconds, finds answers to a total of 94% of the queries: it answers 37%
in the first three seconds, and 57% after reducing the threshold to 50. Both approaches have a maximum
execution time of five seconds, but gradual reduction of the threshold yields a complete analysis of many
more queries (94% versus 40%). Further, the expected analysis time for the gradual-reduction schedule is 2.6
seconds per query, versus 3.3 for the drop-dead schedule.

With this pruning schedule, the time required per query does not depend on the speed or load of the un-
derlying machine. All queries finish in five seconds. Instead, the speed and load on the underlying computer
affect the quality of results that DDP produces. A slower machine will still finish each query in five seconds
but will produce less precise results.

142 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

• total queries: 765

• at 3000 threshold:

– queries finishing in under 3000 ms: 281

– total time for those: 110946 ms

– queries finishing in under 5000 ms: 305

– total time for those: 206968 ms

– queries that take over 3000 ms at threshold of 3000: 484

– queries that take over 5000 ms at 3000: 460

• at 50 threshold:

– queries that are under 2000 ms at threshold 50 and also over 3000 ms at threshold 3000: 438

– total time for these: 365521 ms

– queries that are both over 3000 ms at threshold 3000 and over 2000 ms at threshold 50: 46

• drop-dead at 5 seconds should require 3277 ms/query:

206968 + 460 ∗ 5000
765

• gradual decay should require 2641 ms/query:

110946 + 365521 + 484 ∗ 3000 + 46 ∗ 2000
765

Table 10.4: Calculation of expected time for the gradual-reduction pruning schedule.

10.7. A PRUNING SCHEDULE FOR INTERACTIVE USE 143

This schedule has been designed according to experimental results, but it has not been experimentally
tested. It remains future work to determine whether this schedule produces the high level of precision we
expect based on the available data thus far.

144 CHAPTER 10. EMPIRICAL VALIDATION OF DDP

Chapter 11

Proposed language changes

A fundamental goal of the present research project has been to perform analysis in an unmodified, extremely
dynamic programming environment that makes no concessions to ease of analysis. This goal is valuable, be-
cause it demonstrates that, given suitably rich dynamic semantics including memory safety, type-tagged data
values, and (dynamic) type safety, it is possible to perform a substantial amount of data-flow analysis. Never-
theless, there is no need for future software developers to work with a language at this extreme. This chapter
briefly explores some language changes and research directions that seem likely to improve the performance
of data-flow analysis without harming the overall character of the programming environment.

Initialized Variables Variable bindings in Smalltalk are automatically initialized to hold the special value
nil whenever there is no other value to give them. This automatic initialization applies to all forms of
variables other than parameters; parameter bindings are created at the time of a message send and thus their
initial values are specified in the actual arguments of the message. Automatic initialization is necessary,
given the rest of the language definition, in order to provide the valuable property of memory safety. It is
impossible in Smalltalk to access memory in a way that violates the expected memory model. If variables
were not automatically initialized, then it would be possible for a variable to hold an arbitrary bit pattern and
for a program that accidentally uses that pattern as an object reference to corrupt memory.

Automatic initialization has a negative effect on type inference, however, as pointed out previously by
Agesen [3]. A correct type inferencer must declare that all variables other than parameters can hold nil, i.e.
type {|UndefinedObject|}. This is an immediate loss of precision if the variable is defined to a more useful value
and the automatically supplied nil is never used. Additionally, it can cascade into other precision losses for
data-flow queries that depend on type queries on variables. Looking ahead, a keen example of the problem is
the new type-specific flow goals that are forced to be added in Chapter 13.

A property that can be exploited to improve this situation, however, is that many variables in typical
programs do not have the automatic initialization value read from them. Every time such a variable is bound,
it is assigned a new value before the program ever reads from the new binding. Automatic initialization is
important for safety, but it is frequently not needed for expressiveness.

Agesen exploits this property by performing an extra analysis before the type-inference proper in order
to statically detect many cases where a variable’s automatically initialized value is not used. He reports a
substantial increase in precision as a result [3].

An alternative solution that is worth exploring is to amend the language to allow initializers with variable
declarations. Instead of merely declaring that a block has a temporary variable named foo, a block can
simultaneously declare the variable and give it an initial value of, say, 0. This approach does not increase
the verbosity of programs but does allow a safe mechanism for a type inferencer to avoid polluting more
variables with type {|UndefinedObject|}. This approach is used in a wide variety of languages including C [43],
Java [30], and Ada [65], and we believe it would be a net improvement to add this feature to Smalltalk.

145

146 CHAPTER 11. PROPOSED LANGUAGE CHANGES

Soft Types Soft types [16] provide a mechanism to add the benefits of static types to a language without
removing the dynamic character. Users can optionally annotate variables with types, and static tools can use
whatever types the user has provided to gain various benefits such as error checking and improved compila-
tions.

While soft typing is frequently promoted as a mechanism for error checking and improved compilation,
it also has advantages for type inference. The type annotations provide upper bounds on the types that can be
inferred. Any type query on a type-annotated variable can use the annotated type as an upper bound on the
inferred type. As a particularly interesting case, a pruned type query does not need to infer a type of >, but
instead can infer a type equal to the annotated type.

Modules Module systems provide a number of techniques that can potentially reduce the number of feasible
data-flow paths. The intuition is that most data- and control- flow occurs within modules, i.e. that there is
relatively little flow between modules.

To achieve this advantage, the module system must provide some form of restriction on communication
between modules. Static types at the module interfaces provide one mechanism for at least narrowing the
communication channels that cross module boundaries. Adding static types to module interfaces does cause a
dynamic language to become more static, but the dynamic character of the language could still be maintained
for work that is within modules.

Another promising mechanism is that of ownership types [13, 7]. Ownership types provide statically
checkable guarantees about the scope to which objects can flow. For example, ownership types allow check-
ing the property that an OrderedCollection’s internal array object only flows to the methods and instance
variables of class OrderedCollection—that is, the array is owned by the OrderedCollection that uses it. It
would appear that ownership types could be just as beneficial for limiting feasible flow paths for module
systems as they are for individual classes.

It is a challenging research project to develop a module system that both maintains the dynamic character
of Smalltalk while obtaining sufficient static restrictions that analyzers can benefit. Nevertheless, this sug-
gestion is included in this chapter, notwithstanding that the rest of the chapter gives suggestions for straight-
forward improvements. Given the state of the art today, an suitable module system appears both feasible and
useful.

Deployment-Time Interpreter A limited-strength deployment-time interpreter for Smalltalk would im-
prove the reliability of results inferred by any static analysis. Static analyzers for Smalltalk must necessarily
assume that extremely reflective features of the language will not be used at deployment time. If, for example,
a program reads a string from the user and then recompiles methods depending on the contents of that string,
then an analyzer has little hope of making a safe prediction about program behavior.

These reflective features are most frequently used by the development tools, not by applications them-
selves. Thus, it should prove useful for many applications to have a limited-strength version of the interpreter
that does not allow those features to be used. Such an environment could even be built within a standard full-
strength development environment. Developers could then test and deploy their code in the limited version
of the language while performing the rest of the program development with the reflective power of the full
language.

Chapter 12

Future work

This research reopens a static analysis problem that was widely suspected to be intractable. By proving the
problem tractable and by providing an approach for solving it, the work opens a variety of future work.

12.1 Other languages and dialects
The current implementation is in the Squeak dialect of Smalltalk. The general approach of DDP should
work, however, in a variety of Smalltalk dialects and in a variety of higher-order languages. It would be
valuable to implement DDP in other Smalltalk dialects, and to adjust DDP for other languages entirely.
Even statically typed languages can use the general approach and perhaps have better data flow information
inferred. Intuitively, DDP should be effective in this wider variety of contexts, but one cannot be certain until
it is tried.

12.2 Exhaustive analysis
It is sometimes useful to perform an exhaustive analysis of an entire program, but DDP is not designed to
efficiently do so. DDP does allow for exhaustive analysis, simply by repeating the analysis on every variable
and expression in an entire program, but this approach is probably less efficient than is possible. Much
information would be calculated but then discarded; the subgoals of each target goal produce useful and true
data-flow judgements but those judgements would be discarded.

For an efficient exhaustive analysis, it is desirable to keep old results and to reuse them in later queries.
Subgoal pruning adds a complication: distant subgoals of the target goal are more strongly affected by prun-
ing, and thus have relatively low precision. At the extreme, if a subgoal is distant enough that it was in fact
pruned, then there is no benefit from reusing it. Thus, before a judgement is reused, it is important to consider
how close to the target the goal was.

Additionally, it is probably desirable to run multiple queries simultaneously. To choose the queries to
run, one could start with an individual query and then promote the first k subgoals created to additional
target goals. With this approach, all k + 1 target goals are likely to contribute to each other and to need
similar subgoals. Thus a small increase in the pruning threshold should allow k + 1 targets to be computed
simultaneously without much loss in precision.

12.3 Pruning
The pruning approach implemented thus far is simple. While a simple technique gives a better validation of
the abstract algorithm in general, the overall performance of a concrete algorithm is affected by the choice of

147

148 CHAPTER 12. FUTURE WORK

pruning strategy. A good choice of pruning algorithm is a problem in artificial intelligence, and predictably
there is a large area of investigation possible.

One specific idea that could be immediately explored is the following: some dependencies are stronger
than others. For example, if one type judgement is required to have a supertype of another type judgement’s
type, then the two judgements are in a strong dependency—pruning one judgement would effectively cause
the other to be pruned as well. If one type judgement merely influences the call graph, which in turn influences
another type, then there is a weak dependency between the types. In the first case, pruning one judgement
will effectively prune the other, so strong is the dependency. In the latter case, however, the dependency is
so weak that the pruning may even have no effect at all. A better pruning algorithm would consider direct
dependencies much more important than other dependencies. The occasional 4-times penalty described in
section 4.8 is a simple example of this general refinement.

Another direction to investigate, related to pruning, is the character of the goal pool for typical problems.
For example, such investigation could help find a good threshold size to use for a particular program. Cur-
rently, little is known about the goals and their dependencies, and thus guesses about the overall algorithmic
strategy can only be evaluated by implementing them and trying them.

12.4 Other analysis problems
The present work studies type inference in the language Smalltalk. The general approach of DDP, however,
appears promising for other problems and for other programming languages. It would be interesting to learn
whether the general approach is effective more widely.

Type inference is an interesting problem for many languages. Probably DDP is effective in other dynamic
languages such as Self and Scheme, and it would be interesting to verify that it is. Perhaps DDP is useful in
static languages such as Java and ML, though only experimentation can say.

Further, there are other data flow problems that the approach might help with. Other data-flow analyses,
such as alias analysis [67] and binding-time analysis [36], seem particularly promising.

Finally, the present work has used type inference based on CPA contours. It would be interesting to
systematically analyze which other type inference approaches can be adapted to DDP. Probably, there are
combinations that make sense. The current pruning approach of DDP choose between two extremes for
each goal: either a precise CPA-based analysis, or an imprecise conservative analysis. Likely, other analysis
approaches could be used as intermediate pruning levels.

12.5 Applications
Finally, it would be valuable to try other applications of type inference than program understanding. Compiler
transformations and dead code removers would be good applications to try. They would both be useful and
interesting tools in themselves, and they would both give alternative objective measures of the analysis’s
effectiveness. These extra object measures would be useful for guiding further development of the analysis
itself.

Chapter 13

DDP/CT: Extending DDP with
source-tagged classes

This chapter describes an extension to DDP called DDP/CT. The extension uses the concept of source-
tagged classes, or source tags to support analysis in the face of data polymorphism. This extension has been
implemented, but it has not been empirically validated and it has not been proven correct. Thus, this chapter
describes part of the research frontier for the type inference work as described in this document.

Data polymorphism is, in Agesen’s words, “the ability of a slot (or variable) to hold objects with multiple
object types” [3]. Generic “container” or “collection” classes such as lists, tables and arrays are the standard
example of data polymorphism: the one Vector class can be used to create both a vector of integers and a
vector of strings.1 As Agesen pointed out, data polymorphism can induce significant loss of precision in
analyses that perform, or are dependent on, type inference. A data-flow analysis in this setting will typically
merge the types of all the values that flow into distinct instances of any collection class. From the analyzer’s
point of view, if an object flows into one instance of a collection class, it will then flow out of every instance of
that same collection class. So, for example, if the program has two completely distinct vectors, one containing
integers and the other containing strings, analysis will show that a single fetch from either of these vectors
could produce either an integer or a string.

To address this problem, one can enrich the analyzer’s type system to partition objects more finely than
by class. Instead of all instances of class Vector being in the same type, those instances can be subdivided
in some fashion into the types (Vector, l1), . . . , (Vector, ln) for some sequence of discriminators l1 . . . ln. The
difference is shown in Figure 13.1 and Figure 13.2. This partitioning segregates flow paths that go through
the class: flow into any object of type (Vector, li) can only flow out of an object of that same type.

The choice of partitioning matters. A good partition leads to a flow graph like that in Figure 13.2, whereas
a poor one leads to a flow graph like that in Figure 13.3.

For relatively static languages (such as Java [30]), an effective partitioning strategy is that of Wang and
Smith’s DCPA algorithm: subdivide objects according to which new expression instantiated them [72]. This
approach yields a true partition because every object must have been instantiated by exactly one new expres-
sion; objects created by line 134 of the source code must be different from objects created by line 431.

For extremely dynamic languages such as Smalltalk, however, this approach is ineffective. The problem
is that, in Smalltalk, object creation is not a primitive syntactic form. It is a single primitive method, called
basicNew, that is triggered indirectly by various instance-creation methods around the program.2 Smalltalk
classes are themselves objects, and when a new object is created at run time, the classes are typically passed
through a sequence of regular methods until arriving at the actual basicNew invocation. Since there is only

1In Hindley-Milner type inferencers, this facility is described by the term parametric polymorphism [15]. Since the analysis we are
describing concerns an object-oriented language, and since the analysis is an intellectual descendent of Agesen’s, we hew to the term
data polymorphism.

2For clearer exposition, we are ignoring the existence of a small handful of such methods.

149

150 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

Vector

a c

d e f

b

Figure 13.1: Without data-polyvariant analysis, a type inferencer intermixes all flows that go through a class’s
instance variables. For example, according to this analysis-level flow graph, objects in flow position a might
flow to any of d, e, or f.

a c

d e f

b

Vector<2> Vector<3>Vector<1>

Figure 13.2: If instances of a class can be partitioned, then a type inferencer can, to an extent, segregate flows
through the class’s instance variables. For example, objects in flow position a can now be seen to flow to d

but not to positions e or f. On the other hand, flow from b still reaches three positions. This partitioning
improved the flow analysis of a and c but not of b.

one true basicNew method in the program, this kind of partitioning is trivial and unhelpful.
This chapter describes a partitioning strategy that achieves the effect of DCPA’s strategy in Smalltalk,

even though Smalltalk programs only have a single instantiation point. Note that it is described in terms of
the full Smalltalk language. Because Mini-Smalltalk includes a syntactic new statement instead of a new

method, it does not capture enough of full Smalltalk to support describing the DDP/CT extensions.

13.1 Extensions

DDP/CT includes a number of individual extensions to the base DDP algorithm:

1. It extends the type system to allow class types to be subdivided using source tags.

2. It adds a new kind of goal, the inverse type goal.

3. It adds a second solution strategy for answering senders goals that uses inverse type goals.

4. It adds a new kind of goal for finding the type of array elements.

5. It augments flow goals so that they can trace the flow of just those objects within a specified type.

13.1. EXTENSIONS 151

a c

d e f

b

Vector<8> Vector<9>Vector<7>

Figure 13.3: This poor choice of partitioning leads to a more expensive analysis with no improvement in
precision. As in Figure 13.1, the analyzer will predict that flow from any of a, b, or c can reach any of d, e,
or f.

Source tags are the core of DDP/CT’s extensions. They provide a mechanism for subdividing the set of
objects that are instances of one class, thereby providing a way to segregate data-flow paths through such
objects.

The other four extensions are needed to exploit this new subdivision. The new strategy for senders goals is
needed to trace backwards from a class’s instantiation methods to callers that feasibly invoke the methods for
a particular partition of the class’s instances; with the standard DDP strategy, all invokers of the initialization
methods would be considered feasible, leading to the intermixing that subdividing the types was intended to
prevent. The new inverse type goals, in turn, are required to support this new strategy for answering senders
goals.

The array-element type goals are added because arrays are widely used data-polymorphic objects in
Smalltalk, not only as data-structures in their own right, but also as the underlying storage for many other
collection classes, such as hash tables. We hope that source-tagged types will finally provide a way to analyze
these uses precisely. Type-specific flow goals have been added as a simple way to improve the precision of
flow goals by avoiding flow paths of objects other than the interesting ones.

13.1.1 Source-tagged classes
Source-tagged classes give a way to approximate the partitioning approach of the proven DCPA algorithm,
even though Smalltalk only has one basicNew method instead of Java’s many separate new expressions
throughout the program. The approach exploits the common idiom that most objects are created with a
message-send expression whose target is the immutable global variable that is the primary reference to the
class object. Common examples are “ValueHolder new” and “Point x: 3 y: 5.” In this idiom, the
constructor method (new and x:y: in these two examples, respectively) invokes the basicNew method on
the class to instantiate the class and then invokes a sequence of methods on the resulting object to initialize
that object with the specified parameters.

The partitioning approach of DDP/CT, then, is to attach a source tag to all distinct references to a class
in the source. Figure 13.4 and Figure 13.5 depict the general idea. This is a static or abstract analog to the
dynamic “taint” attribute used in Perl for security purposes. Each location in the program text where a class
is mentioned has its own source tag. The abstract semantics associated with the type inference evaluates such
a class reference to its tagged value. The tag is preserved as the abstract value flows through the program
during the analysis’ abstract interpretation. When an object is instantiated by sending the primitive basicNew
method to the class object, the tag is transferred to the abstract object thus created.

Source-tagged classes provide the effect of DCPA in this more dynamic setting: two different occur-
rences of “ValueHolder new” in the source code will cause two distinct abstract values to be created by
the analysis. Hence, when an abstract value later flows into one of these two instances, it won’t erroneously
tunnel over to the other one.

152 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

class

class

class

3@4

1@5

6@2 Point

Figure 13.4: The semantics of Smalltalk are that classes are shared and singular. All instances of class Point
(3@4, 6@4, etc.) have a reference to the same class object.

class

class

class

3@4

1@5

6@2

Point<1>

Point<2>

Figure 13.5: For DDP/CT, we can imagine that there are multiple copies of each class, one for each location
the class is mentioned in the source code. Each copy is indistinguishable to regular program code—even
the equivalence operator (==) does not distinguish them—and thus the compiler does not need to explicitly
represent the tags. The tags are present in the abstract semantics, however, and can be reasoned about by a
type inferencer.

A class type {|C|} in DDP includes all objects that are instances of class C. In DDP/CT, a class type can
also include a source tag l and be of the form {|C, l|}. The type {|C, l|} includes precisely those instances of C that
are tagged with source tag l.

Tagged types are introduced to a running type inference whenever there is a type goal for an expression
that simply reads the primary global variable holding a class. Instead of solving such a goal with a simple
class type as the base DDP would, DDP/CT solves the goal with a tagged class type.

13.1.2 Inverse type goals

A inverse type goal requests a flow position that includes all program locations that could produce an object
of a specified type. The specified type must be a source-tagged class type. To solve an inverse type goal for
source-tagged type {|C, l|}, DDP/CT uses one of two strategies depending on whether C is a metaclass or not.

If C is a regular class and not a metaclass, then {|C, l|} includes objects that were created by the basicNew
method. To solve such a goal, DDP/CT simply traces the forward flow (by posting flow goals) of the return
value from the basicNew method3 under an assumed context that the receiver is of type {|mclass(C), l|}. We
use “mclass(C)” to mean the metaclass of class C. Solving this goal will require finding the precise senders
of the basicNew message under these assumptions as described in the next section.

3There are actually a small number of such methods, and the analyzer must trace all of them.

13.1. EXTENSIONS 153

If C is a metaclass, then {|C, l|} includes the class rclass(C) with tag l, where we use rclass(C) to mean the
regular class whose metaclass is C. Aside from direct data flow, such an object can only enter the computation
from two sources: the program executes the expression with tag l, or the program invokes the reflective class
method on an instance of {|rclass(C), l|}. The class method returns the class of the receiver of the message,
and it is frequently used in idiomatic Smalltalk. For example, it is used (indirectly) by the copy method of
the Collection class in order to create a new collection of the same class as the receiver. Therefore, if C is a
metaclass, DDP/CT traces flow forward from two places: the expression with tag l, and the class method
under a context where the receiver type is {|rclass(C), l|}.

Some exceptions should be noted. A fixed set of primitive Smalltalk classes have special syntax for
creating instances of that class; these classes are not typically instantiated by means of sending new-style
creation messages to the class. Examples are blocks, which have their own syntax, and numbers, which can
appear as literals. An inverse type query on such a class always returns position >fp.

13.1.3 Senders goals
Recall from Chapter 6 that a senders goal in DDP finds those expressions in the program that can invoke
a specified method in a specified context. The strategy DDP uses to find those senders is: first, find all
message-send expressions that invoke a method of the appropriate name, and second, check that the type of
the receiver (which must be inferred using a subgoal) is consistent with the expression invoking the method.

A potential difficulty of this approach arises if there are a large number of message-send expressions
whose message name matches the name of the queried method. For example, when trying to find the senders
of the AtomMorph class’s initialize method, the standard strategy would consider hundreds of potential
message-send expressions, generate a type query for each one of them, and, most likely, both generate a large
number of subgoals and include a large number of false positives. Worse, consider querying for the senders of
method at:put: in class Array, perhaps as part of an effort to find the type of elements that could be added
to a particular set of interesting arrays. In the standard Squeak code base, there are over one thousand senders
of at:put: to sort through, and many of them do, in fact, invoke Array’s at:put: method. Potentially only
a small number of them invoke at:put: on the array objects that are of true interest, but if the question is
formulated as “who invokes at:put: in Array,” then the answer to the question is forced to include a large
number of extra senders in order to be correct.

DDP/CT therefore uses an alternative strategy if the specified context includes a non-trivial receiver type
(i.e., not the top type >). If the receiver type of the method is specified, then the method in that context can
only be invoked by a message-send expression where the receiver is in the specified type. The alternative
senders-goal strategy uses this fact. It has as a subgoal an inverse type goal for the specified receiver type.
The answer to this subgoal includes all expressions in the program that can hold an object of the specified
type. The alternative strategy then selects as possible senders those message-send expressions whose receiver
is in the inverse type goal’s answer and whose message selector matches the method being queried.

In other words, the alternate strategy swaps the roles of the two selection criteria. Instead of applying a
semantic filter to the results of a base syntactic query, it syntactically filters the results of a semantic query.

13.1.4 Array-element type goals
Smalltalk arrays are treated as regular objects. There is no special syntax for accessing them. Instead, an
array is an object a that handles operation “a at: i” to retrieve the element at index i, and “a at: i put: e”
for storing element e into the array at index i. Other objects in the system respond to the at: and at:put:

messages, doing non-array operations in response to them, and thus an expression such as “a := b at: i”
might or might not perform an array operation. In fact, different executions of this same statement might
sometimes invoke an array operation and other times not, depending on the class of object to which b is
bound at each execution.

The type goals of DDP find a type for a variable, but Smalltalk arrays do not hold their contents in regular
Smalltalk variables. Thus, the base DDP algorithm provides no way to even ask for the type of an array’s

154 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

elements. This was satisfactory at the time DDP was designed, because DDP provided no strategy for finding
such types. DDP/CT’s source tags, on the other hand, do provide the necessary polyvariance for this analysis,
and since arrays are frequently used in Smalltalk programs, DDP/CT also includes a new array-element type
goal.

An array-element type goal finds the type of elements of any array in a specified array type. Ideally, the
specified array type includes a source tag. In that case, the arrays whose elements are being studied are those
arrays created with the specified source tag. If the array type does not have a source tag, then the solution
strategy will still be followed, but most likely it will terminate quickly with a type of >.

To solve an array-element type goal, the algorithm uses a senders goal to locate all invocations of at:put:
where the receiver might be a member of the goal’s array type. Then, for each such invocation found, it posts
a type goal for the second argument (i.e., the put: argument). Finally, it takes the union of the answers from
all of those type goals and reports that union as the type of elements in the arrays in question.

13.1.5 Type-specific flow goals

Recall that a flow goal asks where values can flow from a specified starting location. They are used for a
number of purposes, including the inverse type queries described above and finding the program locations
where a particular block might be invoked. Some of the enhancements described above rely heavily on flow
goals; manual inspection of early trials of DDP/CT suggested that the enhancements were not as effective as
desired due to over-approximation in the flow goals on which the solution strategies depend.

The biggest problem appeared to be that DDP would trace flow paths that are feasible in principle but
infeasible for the data type of interest. For example, a variable that sometimes holds arrays that are being
traced by an array-element type goal might at other times hold the value nil. Tracing flow through this
variable would necessarily trace not only the interesting paths through which the relevant arrays flow, but
also the irrelevant paths that nil will follow. If a message is sent to the variable, then completely different
methods might be invoked when the variable holds an array versus when the variable holds nil; tracing flow
through these later methods causes a subgraph of completely irrelevant program locations to be added to the
potential flow from the original variable.

The solution in DDP/CT is to ask a better question. Instead of simply asking about flow from a specified
point, DDP/CT can ask about flow of objects of a particular type starting at a specified point. Since, in
fact, every use of flow goals in DDP is attempting to find the flow of objects in a known type, every use of
flow goals can take advantage of the new facility to specify the type of objects being traced. To continue the
previous example, if the analyzer is tracing the flow of arrays, then it can use a flow goal that only traces
arrays. The flow-goal solution strategy is then free to ignore methods to which nil flows but arrays do not.

13.2 Example Code Fragments
Figure 13.6 shows some example code that is data polymorphic. Class ValueHolder is a standard Smalltalk
class used to hold an arbitrary value—it is a simple “cell” object. The internal value is set using the
contents: method, and fetched using the contents method. The example code creates two value holders,
storing one of them in c and the other in other. The code copies the reference in c to a, resulting in c and
a being aliases to the same object. The value holder in c is given, via its alias a, the string ’hello’ to hold,
while the value holder in other is given the integer 12345 to hold.

This code, in isolation, uses ValueHolder in a data-polymorphic fashion: there are other methods in the
standard Squeak image which use the class to contain other data types. As Figure 13.7 shows, however,
DDP/CT successfully infers a precise type for the value held in c. It traces data flow back to the string
’hello’ but ignores the infeasible data-flow path to the integer 12345.

The next two figures show variations of the code from Figure 13.6 in order to demonstrate an extent
and a limitation of DDP/CT’s effectiveness. In Figure 13.8, the class ValueHolder is stored into vari-
ables vhclass1 and vhclass2 before being instantiated. This is an example of Smalltalk’s reflective abil-

13.2. EXAMPLE CODE FRAGMENTS 155

| c a other |

c := ValueHolder new.

a := c.

a contents: ’hello’.

other := ValueHolder new.

other contents: 12345.

other contents.

c contents

Figure 13.6: An example Smalltalk fragment that exhibits data polymorphism. In the first line, c, a, and
other are declared as temporary variables. The ValueHolder class is instantiated twice and the two instances
are assigned to c and other; a is assigned the same value as c. Thus, a and c are aliases for the same object.
A string is installed into the a/c value holder on the fourth line, while an integer is installed into other’s
value holder on the following line. DDP/CT can distinguish these two value holders from each other and
deduce that the “c contents” fetch on the final line will produce a string, as shown in Figure 13.7.

Figure 13.7: DDP/CT successfully infers that value holders assigned to c from Figure 13.6 can only hold
strings and the undefined object nil. As an aside, the object can hold nil because all instance variables
come into existence holding nil. DDP/CT is not flow sensitive and thus cannot determine that ValueHolder’s
instance variable has been initialized before contents is ever called.

| c a other vhclass1 vhclass2 |

vhclass1 := ValueHolder.

c := vhclass1 new.

a := c.

a contents: ’hello’.

vhclass2 := ValueHolder.

other := vhclass2 new.

other contents: 12345.

other contents.

c contents

Figure 13.8: A variation of the code in Figure 13.6. In this code fragment, the class ValueHolder is stored
into a variable before being instantiated. DDP/CT successfully distinguishes the two kinds of value holders—
those stored in c and those stored in other—just as it did in Figure 13.6.

156 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

ity to manipulate classes as first-class objects themselves. This example demonstrates more clearly why
“ValueHolder new” in Smalltalk is not merely a different way to write “new ValueHolder()” in Java. In
this example, DDP/CT is still able to keep the two value holders distinct and infer that c holds only strings.

Figure 13.9 extends this example further and uses just one variable, vhclass, to hold the class. Both
c and other are instantiated by sending new to vhclass. DDP/CT is unable to distinguish the two value
holders in this case because it tags both of them with the singular reference to the originating occurrence of
ValueHolder on line 2. Even in this case, however, DDP/CT is able to distinguish the two kinds of value
holders in this code fragment from value holders created in other parts of the standard Squeak code base we
use for our tests. Thus, DDP/CT infers that c holds either a string or an integer, even though there are other
value holders in the program that hold other types.

Data-polymorphic analysis is especially useful when it is applied to resolving separate uses of collection
types. A simple example is shown in Figure 13.10. The code creates an array, adds the string ’hello’ to
it, and then retrieves that same string. The analyzer succeeds in this case, as shown in Figure 13.11. The
analyzer uses source tags to connect the at: message-send on the last line of the example to the at:put:

message-send on the third line of the example, while ignoring the other 1706 senders of at:put: in the same
code base.

A more useful and sophisticated example is shown in Figure 13.12. In this example, we create two
numeric vectors, then compute their dot product. The dotProduct: method, not shown, includes a number
of senders to at:. DDP/CT can connect those senders to the senders of at:put: in Figure 13.12 using class
tags, and determine that all of the arithmetic operations the dotProduct: method uses will be applied to
integers. The result produced by DDP/CT is shown in Figure 13.13.

13.3 Example Goal Graph
Let us now step through an example goal graph and see how source-tagged class types are threaded through
DDP/CT. Figure 13.14 shows the code from Figure 13.6 with a couple of expressions labeled: each mention
of ValueHolder is now tagged with its own subscript. These labels will be used in this example as source
tags.

Figure 13.15 shows the goal graph that DDP/CT generates when it is asked to find a type for the expres-
sion “c contents”. Each box in the figure represents a goal. The top part of the box shows the query, e.g.
“type of c contents” for G1. The middle part shows any context that should be assumed while answering
the query. For G1 the assumed context is “(no context),” i.e. no assumption at all. The bottom part of each
box in the figure shows the answer DDP/CT has found for the goal, e.g. {UndefinedObject, String} for G1.

Arrows in the figure show goal dependencies. For example, G7 depends on G9 and G8 in order to be
justified. In a few places parts of the goal graph are elided from the figure. For example, G13 has a number
of dependencies that are not shown, and the answer found to goal G10 has been abbreviated.

Let us now consider each goal in turn. Goal G1 is the initial goal, which asks for a type for c contents.
This expression is a message-send expression, so DDP/CT relies on a subgoal that searches for the responders
to the message send (G2), and subgoals for the value returned from each responding method (G6). Notice
that the responder found by G3 includes a source-tagged class type, and that tagged type is passed on to the
question of G6. Much of the challenge of designing DDP/CT consists of finding sound techniques for source
tags to be passed on in this way through long chains of subgoals.

Goal G2 seeks the responders for c contents under no assumed context. To find the responders, a goal is
posted to find the type of c, the receiver of the message send. The type found by that goal is {|ValueHolder, 1|},
i.e., an instance of ValueHolder that is associated with source tag “1.” Given this type for the receiver, there
is only one possible responder to the message send: the contents method of class ValueHolder, under a
context where the receiver is of type {|ValueHolder, 1|}. Notice, again, that the source tag is propagated from a
goal’s subgoals to somewhere in the goal’s answer; in this case, the tag is propagated from the type found for
c to the responding context in G3’s answer.

Goal G3 requests the type of the variable c. DDP/CT finds the type of a variable by finding the types of all

13.3. EXAMPLE GOAL GRAPH 157

| c a other vhclass1 |

vhclass1 := ValueHolder.

c := vhclass1 new.

a := c.

a contents: ’hello’.

other := vhclass1 new.

other contents: 12345.

other contents.

c contents

Figure 13.9: Another variation of the code in Figure 13.6. This time there is only one variable, vhclass1,
used to hold class ValueHolder. In this case, DDP/CT fails to distinguish the two kinds of value holder
created in this fragment; it infers the same types for “c contents” and “other contents”. However, it
does distinguish these value holders from other value holders in the program at large, ultimately inferring that
both of these holders can hold only strings, integers, or the undefined object.

| arr arr2 arr3 |

arr := Array new: 10.

arr at: 5 put: ’hello’.

arr2 := arr.

arr3 := arr2.

arr3 at: 5

Figure 13.10: Retrieving elements from an array. Data-polyvariant analysis is required in order for the
analyzer to connect objects removed from an array using at: messages to objects placed into that array using
at:put: messages.

Figure 13.11: The analyzer succeeds on the example in Figure 13.10.

158 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

expressions assigned to the variable. In this case, there is only one assignment, the expression ValueHolder1
new, and so the type found for c is copied directly from the type found for ValueHolder1 new.

The type for ValueHolder1 new requires a chain of inferences that is not shown. A particularly inter-
esting inference in the chain, however, is goal G5 which finds a type for ValueHolder1. Instead of being
inferred as type {|ValueHolderclass|} as it would be in DDP, it is given a type of {|ValueHolderclass, 1|}. Thus,
we finally see where source tags are initially injected into the analysis instead of propagated from one goal to
another.

Goal G6 finds a type for the contents instance variable of class ValueHolder. The only assignment state-
ment for that variable is the one in method contents:, which assigns the method parameter newContents
into contents. Goal G7 finds a type for newContents, which in turn requires finding the senders of the
contents: method. There is only one sender, and its first parameter is the literal string ’hello’. Goal G8
finds the type of this literal, i.e. {|String|}.

Source tags pay off in goal G9. G9 finds the senders of contents: under the assumption that the receiver
is of type {|ValueHolder, 1|}. The example code base only contains one such sender; all other statements that
invoke this contents: method invoke it on receivers with different source tags. Without source tags, the
answer to G9 would include a much larger number of senders.

Goal G10 finds all expressions that hold an object of type {|ValueHolder, 1|}. It is a subgoal of G9 and is
used to find those senders of contents: where the receiver has source tag 1. DDP/CT creates goal G12 to
find senders of basicNew where the receiver is of type {|ValueHolderclass, 1|}. That is, to perform an inverse
type query on a regular class, DDP/CT performs a senders query on basicNew for the associated metaclass.

Goal G12 is a senders query where the assumed receiver type {|ValueHolderclass, 1|}. To answer G12,
DDP/CT creates goal G13 to find all expressions that hold an object of type {|ValueHolderclass, 1|}.

Goal G13 is an inverse type query that finds all program locations holding a value of type {|ValueHolderclass, 1|},
a type for a metaclass. DDP/CT immediately includes expression ValueHolder1 because it evaluates to
ValueHolder class with a source tag of 1. DDP/CT immediately excludes all other ValueHolder ex-
pressions, e.g. ValueHolder2, because they have a different source tag. DDP/CT additionally considers
alternatives ways class object can enter the computation in Smalltalk, but in this case there are none and the
subgoals are elided from the figure.

13.4 Multi-level source tags
Factory design patterns [26] present an extra challenge to data-polymorphic analysis. A typical factory
method is shown in Figure 13.16. This method provides a useful level of indirection—subclasses might
override this method, and different platforms might replace the method outright. Unfortunately, the very in-
direction that motivates the design pattern circumvents the strategy of class tags: all value holders created by
the makeHolder method are given the same source tag. Thus, the central approach of this paper, as described
so far, is insufficient to distinguish separate uses of objects created by factories.

A sample use of this factory method is shown in Figure 13.17. Since the same source tag is used for the
value holders held by both vh1 and vh2, data flow through the distinct holders is intermingled as shown in
Figure 13.18.

This example points to a solution, however. Notice that, while the vh1 and vh2 value holders are both
associated with the single mention of the ValueHolder class in the Platform factory method, they access that
method through separate mentions of class Platform. If there were a way to tag the ValueHolder references
with the mention of Platform instead of the mention of ValueHolder, then the two variables’ value holders
could be discriminated by the analysis.

This can be accomplished by generalizing source tags into flow positions. A flow position can include
both a pointer to an expression in the program plus a context under which the expression was evaluated. The
context can include a type for the surrounding method’s parameters and for the current receiver object. The
type of the receiver object, in turn, can be another source-tagged class type, completing a recursion. Thus,
generalizing source tags into flow positions allows the system to apply multiple tags to the same object.

13.5. RELATED WORK 159

A maximum number of tags—i.e., traversals through the recursive cycle of tags to contexts to types to
tags—must be chosen to keep the data-flow lattices finite. Choosing a maximum tagging level of 1 yields an
analyzer equivalent to one using simple source-tagged class types. A level of 0 gives a system that does not
use source tags at all. A level of 2 is sufficient for the example of Figure 13.17, resulting in the precise type
inference shown in Figure 13.19.

13.5 Related work
As mentioned previously, the DCPA algorithm by Wang and Smith partitions objects by which new statement
allocates them [72]. A type-inference algorithm crafted by Oxhøj, Palsberg, and Schwartzbach also partitions
objects by allocation site [51].

A large number of alias-analysis algorithms partition allocated objects using “allocation sites” [37]. An
allocation site is typically an invocation of new or malloc() as in DCPA.

Plevyak and Chien describe an adaptive algorithm that often avoids using instantiation-point tags when
they would not be able to refine the analysis [53]. This approach speeds up the algorithm with no loss in
precision. DDP/CT is less sophisticated and uses source-tags generously even when they are not needed.
This potentially superfluous analysis is mitigated, however, by the ability of algorithms in the DDP family
to focus effort on a relatively small portion of the program. DDP/CT may not happen to analyze a large
number of uses of the same class at all in the sparse elements of the program it traverses for a given request,
independently of whether or not their analyses could have been merged without loss of precision.

160 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

| p1 p2 |

p1 := Array new: 3.

p1 at: 1 put: 2.

p1 at: 2 put: 3.

p1 at: 3 put: 0.

p2 := Array new: 3.

p2 at: 1 put: 3.

p2 at: 2 put: 4.

p2 at: 3 put: 1.

ˆp1 dotProduct: p2

Figure 13.12: Data-polymorphism occurs in numeric array computations.

Figure 13.13: The analyzer succeeds on the example in Figure 13.12.

| c a other |

c := ValueHolder1 new.

a := c.

a contents: ’hello’.

other := ValueHolder2 new.

other contents: 12345.

other contents.

c contents

Figure 13.14: The code from Figure 13.6 with source tags added to the two mentions of ValueHolder.

13.5. RELATED WORK 161

objects of type
{| VH class,1 |} are where?

(no context)

VH , ...

flow from (self basicNew)
in method new of B

receiver is type {| VH,1 |}

a, c, ...

type of ’hello’

(no context)

String

type of VH

(no context)

{| VH class,1 |}

type of (VH new)

(no context)

{| VH,1 |}

type of c

(no context)

UO, {| VH,1 |}

responders to (c contents)

(no context)

(VH>>contents, {| VH,1 |})

type of VH.contents

receiver is type {| VH,1 |}

{Srting, UO}

type of (c contents)

(no context)

{String, UO}

type of newContents

receiver is type {| VH,1 |}

String

objects of type {| VH,1 |}
are found where?

(no context)

a, c, ...

senders of basicNew

receiver type {| VH class,1 |}

(self basicNew) in B>>new

senders of contents:
in class VH

receiver is type {| VH,1 |}

(a contents: ’hello’)

. . .

. . .

. . .

UO = UndefinedObject

B = Behavior

VH = ValueHolder

Abbreviations

1

1

1

G1

G10

G9
G5

G8

G11

G12

G13

G7

G4

G6

G3G2

Figure 13.15: The graph of goals generated by DDP/CT when it infers a type for c contents, an expression
in the method in Figure 13.14.

162 CHAPTER 13. DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

Platform>>makeHolder

ˆValueHolder new

Figure 13.16: A typical factory method, makeHolder, for class Platform. This kind of indirection is useful
to programmers in many circumstances, including the possibility that different platforms will implement
the method to use a different value-holder class. Unfortunately for the analysis, however, all callers of this
method will receive a ValueHolder with the same source tag: the single mention of ValueHolder in the
makeHolder method.

| vh1 vh2 |

vh1 := Platform makeHolder.

vh1 contents: ’hello’.

vh2 := Platform makeHolder.

vh2 contents: 123.

vh1 contents.

Figure 13.17: An example usage of the factory method from Figure 13.16. In this example, the inferencer
as described so far fails to distinguish separate container objects, because both holders are given the same
source tag.

Figure 13.18: The analyzer merges flow through the two different holders in Figure 13.17, and so reports that
vh1 can hold both integers and strings.

Figure 13.19: Using multi-level source tags on the example from Figure 13.17, it is possible to distinguish
objects that are created via a factory object.

Chapter 14

Conclusions

This paper supports its thesis with the following work:

• a description of a new type inference algorithm to solve the stated problem

• a proof of correctness for this algorithm

• an implementation of the algorithm

• empirical analysis of the implementation’s performance

• a complete application, Chuck, leveraging the implementation

The description shows that the algorithm meets the basic requirements in the thesis: the algorithm is
demand-driven, it prunes subgoals, and it produces different types depending on calling context. The descrip-
tion also gives an argument that, intuitively, the algorithm should both scale and produce usefully precise
types.

The proof shows that the algorithm infers correct types.
The implementations of the algorithm and the Chuck tool show that no pragmatic obstacles have been

overlooked by the on-paper descriptions. The algorithm works in full Smalltalk and it generates the informa-
tion needed for the main application intended.

The experimental results and the experiences with the Chuck tool both show that the algorithm finds
usefully precise types in larger programs.

In addition to defending its thesis, my research makes the following contributions:

• It gives an operational semantics for the essence of Smalltalk. That semantics is thorough: it in-
cludes full closure semantics, nested mutable variables, and the #perform : method (sendvar in
Mini-Smalltalk).

• It gives complete data flow rules for demand-driven analysis with CPA abstract contours for Smalltalk,
including precise analysis of code using #perform : and blocks. These rules analyze forward flow in
addition to type inference in order to support these features without being extremely conservative.

• It describes a general algorithm—demand-driven with subgoal pruning—that appears promising for
other analysis problems. The general algorithm allows stronger inference rules to be used without
abandoning scalability.

• It provides a complete implementation of the specific algorithm DDP.

• It provides an analysis framework for Smalltalk, used by the DDP implementation, that efficiently
supports interactive programming.

163

164 CHAPTER 14. CONCLUSIONS

• It provides a program understanding tool, Chuck, that takes advantage of the DDP implementation,
thus bringing DDP’s advantages to practitioners.

• It empirically identifies effective pruning thresholds for DDP, so that future implementors of DDP have
a good initial tuning of the algorithm’s main parameter.

• It empirically identifies the most common types that appear in a representative sample of Smalltalk
code.

• It empirically quantifies the improvement of subgoal pruning over root-goal pruning for DDP.

This work contributes to three major discussions that are ongoing in the programming language commu-
nity.

First, it reopens the problem of context-sensitive type inference in larger programs. The prevailing re-
search on type inference for the last ten years or so has reduced various kinds of sensitivity in order to achieve
scalability. For example, researchers have removed directionality from the data flow, they have removed the
use of precise call graphs, and they have merged goals for multiple expressions into just one. My work adds
a new option that scales while remaining context-sensitive and while using directional data flow.

Second, my work emphasizes a connection between two existing fields: program analysis and knowledge-
based systems. Demand-driven algorithms, in general, are actually simple knowledge-based systems where
each goal has only one rule available for solving it. This connection between the fields seems likely to
be fruitful. The encoding of many analysis algorithms as knowledge-based systems appears likely to be
straightforward. Using a knowledge-based system as the overall architecture, lets a program analyzer attempt
a variety of strong inference rules, without fully committing to the worst-case cost of those rules. This
advantage is not specific to type inference.

Finally, this work continues a long-running discussion in programming language design regarding static
and dynamic languages. Since DDP does infer precise types even in large programs, it seems that type infer-
ence is practical even when a language is not statically type-checked. Thus, this research defends language
designs where one begins with a dynamic language and then adds type-based features as an option to be
applied whenever and wherever a software engineer deems it most useful. In short, this research enriches the
design space between static and dynamic languages.

Bibliography

[1] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Ole Agesen. The cartesian product algorithm: Simple and precise type inference of parametric poly-
morphism. In European Conference on Object-Oriented Programming (ECOOP), 1995.

[3] Ole Agesen. Concrete Type Inference: Delivering Object-Oriented Applications. PhD thesis, Stanford
University, 1995.

[4] Gagan Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In ICSM, pages 453–
462, 1999.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[6] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In Proceed-
ings of the conference on Functional programming languages and computer architecture (FPCA), pages
31–41, New York, NY, USA, 1993. ACM Press.

[7] Jonathan Aldrich and Criag Chambers. Ownership domains: Separating aliasing policy from mecha-
nism. In European Conference on Object-Oriented Programming (ECOOP), 2004.

[8] American National Standards Institute. ANSI NCITS 319-1998: Information Technology — Program-
ming Languages — Smalltalk. American National Standards Institute, 1430 Broadway, New York, NY
10018, USA, 1998.

[9] Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press, 1999.

[10] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-performance computing.
ACM Computing Surveys, 26(4):345–420, December 1994.

[11] Andrew J. Barnard. From types to dataflow: code analysis for an OO language. PhD thesis, Manchester
University, 1993.

[12] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference system for Smalltalk. In
Proc. of the ACM Symp. on Principles of Programming Languages, pages 133–141, 1982.

[13] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object encapsula-
tion. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 213–223, New York, NY, USA, 2003. ACM Press.

[14] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production environment. In
ACM Conference on Object-Oriented Programming, Systems, Language, and Applications (OOPSLA),
1993.

165

166 BIBLIOGRAPHY

[15] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4):471–522, 1985.

[16] Robert Cartwright and Mike Fagan. Soft typing. In PLDI, pages 278–292, 1991.

[17] Craig Chambers. The cecil language specification and rationale. Technical Report TR-93-03-05, De-
partment of Computer Science and Engineering, University of Washington, March 1993.

[18] Matthew J Conway. Alice: Easy-to-Learn 3D Scripting for Novices. PhD thesis, University of Virginia,
1998.

[19] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In ACM Symposium on Principles of
Programming Languages (POPL), pages 238–252, New York, NY, USA, 1977. ACM Press.

[20] Greg DeFouw, David Grove, and Craig Chambers. Fast interprocedural class analysis. In Proceedings of
the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 222–236.
ACM Press, 1998.

[21] Danny Dubé and Marc Feeley. A demand-driven adaptive type analysis. In ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP), pages 84–97. ACM Press, 2002.

[22] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven computation of interprocedural
data flow. In Symposium on Principles of Programming Languages, pages 37–48, 1995.

[23] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 242–256, 1994.

[24] Cormac Flanagan and Matthias Felleisen. A new way of debugging lisp programs. In Proceedings of
Lisp Users’ Group Meeting (LUGM), 1998.

[25] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(2):370–416, 1999.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

[27] Fransisco Garau. Inferencia de tipos concretos en Squeak. Master’s thesis, Universidad de Buenos
Aires, 2001.

[28] Jean-Yves Girard. Interprétation Fonctionelle et Élimination des Coupures de l’Arithmétique d’Ordre
Supérieur. PhD thesis, Université Paris VII, 1972.

[29] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, Massachusetts, 1983.

[30] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison Wesley, Boston,
MA, 1996.

[31] Justin O. Graver and Ralph E. Johnson. A type system for Smalltalk. In ACM Symposium on Principles
of Programming Languages (POPL), pages 136–150, New York, NY, USA, 1990. ACM Press.

[32] David Grove, Greg Defouw, Jeffrey Dean, and Craig Chambers. Call graph construction in object-
oriented languages. In ACM Conference on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLA), 1997.

BIBLIOGRAPHY 167

[33] Mark J. Guzdial and Kimberly M. Rose. Squeak: Open Personal Computing and Multimedia. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

[34] Nevin Heintze and David A. McAllester. On the cubic bottleneck in subtyping and flow analysis. In
Logic in Computer Science, pages 342–351, 1997.

[35] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 24–34, 2001.

[36] F. Henglein. Efficient type inference for higher-order binding-time analysis. In J. Hughes, editor, Func-
tional Programming Languages and Computer Architecture, pages 448–472. Berlin: Springer-Verlag,
1991.

[37] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE), Snowbird, UT, 2001.

[38] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the future: The story of
Squeak, A practical Smalltalk written in itself. In ACM Conference on Object-Oriented Programming,
Systems, Language, and Applications (OOPSLA), 1997.

[39] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-order languages.
In ACM Symposium on Principles of Programming Languages (POPL), pages 393–407, New York, NY,
USA, 1995. ACM Press.

[40] Neil D. Jones and Flemming Nielson. Abstract interpretation: A semantics-based tool for program
analysis. Handbook of logic in computer science, 4:527–636, 1995.

[41] Marc A. Kaplan and Jeffrey D. Ullman. A scheme for the automatic inference of variable types. Journal
of the ACM, 27(1):128–145, 1980.

[42] Alan C. Kay. The early history of Smalltalk. In The second ACM SIGPLAN conference on History of
programming languages, pages 69–95. ACM Press, 1993.

[43] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall Professional
Technical Reference, 1988.

[44] Donald E. Knuth. An empirical study of FORTRAN programs. Technical Report RC 3276, IBM
Research, 1971.

[45] Peter M. Kogge. The Architecture of Symbolic Computers. McGraw-Hill, 1991.

[46] Xavier Leroy. Polymorphic typing of an algorithmic language. Research report 1778, INRIA, 1992.

[47] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3), December 1978.

[48] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT, August 1990.

[49] Chris Nikolopoulos. Expert Systems: Introduction to First and Second Generation and Hybrid Knowl-
edge Based Systems. Marcel Dekker, Inc., New York, 1997.

[50] J. Oikarinen and D. Reed. Internet Relay Chat Protocol. RFC 1459, May 1993.

[51] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making type inference practical. In
European Conference on Object-Oriented Programming (ECOOP), pages 329–349, 1992.

[52] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, USA, 2002.

168 BIBLIOGRAPHY

[53] John Plevyak and Andrew A. Chien. Precise concrete type inference for object-oriented languages. In
ACM Conference on Object-Oriented Programming, Systems, Language, and Applications (OOPSLA),
pages 324–340, 1994.

[54] Fran cois Pottier. A framework for type inference with subtyping. In ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 228–238, New York, NY, USA, 1998. ACM
Press.

[55] Thomas W. Reps. Demand interprocedural program analysis using logic databases. In Workshop on
Programming with Logic Databases (Book), ILPS, pages 163–196, 1993.

[56] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for Smalltalk. Theory and Practice of
Object Systems, 3(4):253–263, 1997.

[57] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In Steven S.
Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and Application. Prentice Hall
Professional Technical Reference, 1981.

[58] Mark A. Sheldon and David K. Gifford. Static dependent types for first class modules. In LFP ’90:
Proceedings of the 1990 ACM conference on LISP and functional programming, pages 20–29, New
York, NY, USA, 1990. ACM Press.

[59] Olin Shivers. Control-Flow Analysis of Higher-Order Languages, or Taming Lambda. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991. Tech-
nical Report CMU-CS-91-145.

[60] Olin Shivers. The semantics of Scheme control-flow analysis. In Paul Hudak and Neil D. Jones, editors,
Proceedings of the First ACM SIGPLAN and IFIP Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’91), SIGPLAN Notices, Vol. 26, No. 9, pages 190–198, Yale
University, June 1991. ACM Press.

[61] Saurabh Sinha and Mary Jean Harrold. Analysis and testing of programs with exception handling
constructs. Software Engineering, 26(9):849–871, 2000.

[62] R. B. Smith and D. Ungar. Programming as an experience: The inspiration for self. In European
Conference on Object-Oriented Programming (ECOOP), 1995.

[63] Bjarne Steensgaard. Points-to analysis in almost linear time. In Symposium on Principles of Program-
ming Languages, pages 32–41, 1996.

[64] Norihiss Suzuki. Inferring types in Smalltalk. In ACM Symposium on Principles of Programming
Languages (POPL), pages 187–199, 1981.

[65] S. Tucker Taft and Robert A. Duff, editors. Ada 95 Reference Manual: Language and Standard Li-
braries. Springer, 1997.

[66] Aaron Melvin Tenenbaum. Type determination for very high level languages. PhD thesis, Courant
Institute of Mathematical Sciences, 1974.

[67] Frank Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–189,
1995.

[68] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experience with an application
extractor for Java. In ACM Conference on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLA), pages 292–305, New York, NY, USA, 1999. ACM Press.

BIBLIOGRAPHY 169

[69] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction algorithms. ACM
SIGPLAN Notices, 35(10):281–293, 2000.

[70] D. Ungar and R. B. Smith. Self: The power of simplicity. In ACM Conference on Object-Oriented
Programming, Systems, Language, and Applications (OOPSLA), 1987.

[71] Peter von der Ahé. Applications of concrete-type inference. Master’s thesis, University of Aarhus,
2004.

[72] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for Java. Lecture Notes in
Computer Science, 2072:99–117, 2001.

[73] Mario Wolczko. Semantics of Smalltalk-80. In European Conference on Object-Oriented Programming
(ECOOP), pages 108–120, London, UK, 1987. Springer-Verlag.

[74] Mario Wolczko. Semantics of Object-Oriented Languages. PhD thesis, University of Manchester, 1988.

Index

A
abstract contour . 9
abstract interpretation . 7
accounts . 93
activation. .54
all activations . 56
all blocks . 54
all objects .56
array-element type goals . 154

B
binding map . 66
blk stat . 105
block . 31, 50
block . 54
block specification . 54
block statement . 50
block type . 38, 70
blue book . 14
bound stats . 66

C
call chain . 9
call-graph construction . 5
call-graph extraction . 5
calling context . 9
cid . 54
class . 50
class analysis . 5
class type . 69
closure . 37, 50
compiler optimization . 6
concrete type inference . 5
configuration . 56
constraints . 7
context . 8, 9, 70
context menus . 121
context-sensitive . 8
contour . 54
contour id . 54
contour-selection function . 9
control-flow analysis . 5

CPA . 74
cpasplit . 74

D
data polymorphism. 149
data-flow analysis . 5
dead-code removal . 6
demand driven . 8
demand-driven . 18
derivation browser . 121
directional data flow . 10
dynamic bindings . 66

E
empty flow position . 72
empty type . 70
environment . 37
error detection . 6
exhaustive analysis . 8, 147
expansion . 9
expert system . 13

F
fail code . 32, 42
flow position . 33, 72
flow select . 105
flowpos . 74
forward-flow queries . 122

G
GlobalsCID . 54
goal . 18, 32, 78

H
halted . 56

I
implementers-of . 121
inference engine . 13
input/output interface . 13
inst lit . 56
inverse type goal . 152

170

INDEX 171

J
judgement . 8, 76
justification rule .93
justification tree . 93
justified . 93

K
knowledge base . 13, 20
knowledge-acquisition module 13
knowledge-based system. 13

L
lambda expression . 50
lhs . 76
lookup contour . 56

M
main block . 50
message . 31
message send . 31
metaclass .43
method. .31
method specification . 53
Mini-Smalltalk . 49

N
NilCID . 54
NilObj . 54
non-standard semantics . 7

O
object . 54

closure . 54
normal . 54
selector . 54

P
parameter skip count . 39
parameter-types context . 9
parameters context . 70
parametric polymorphism . 149
polyvariant . 8
possible blocks . 100
possible selectors .100
preservation . 2
primitive method . 42
primitive routine . 42
program analysis . 2
program transformation . 6
program understanding . 6
program verification . 2
progress . 2

prune . 18
pruning . 20
pruning depth . 41
pruning schedule . 141
pruning threshold . 41

Q
query . 32

R
read var . 57
receiver . 31
remove redundancies . 65
responders judgement . 77
responders query . 34
rhs . 76
root-proximity heuristic . 41

S
selector . 31
selector type . 39, 70
self flow position . 72
senders judgement . 77
senders set . 77
senders-of . 121
simple flow judgement . 76
simple type . 74
source tag . 149, 151
source-tagged classes . 149, 151
ST0 . 29
static bindings . 66
STb . 37
STbp . 38
step . 58
Stop Dead . 42
subgoal . 94
subsumed . 72
subtype . 70
sum flow position . 72
sum type . 70

T
templates . 9
transitive flow judgement . 77
type . 34, 69
type checking . 12
type determination . 5
type inference .5
type judgement . 76
type queries . 122

U
universal flow position . 72

172 INDEX

universal type . 70
useful . 131

V
valid object . 56
valid program. 52
valid variable . 66
variable . 65
variable flow position . 72

W
write var . 57

	Introduction
	Overview
	Problem details
	Large programs
	Sound upper bounds
	All programs accepted
	Concrete types
	Higher-order languages
	Smalltalk
	Context-sensitive analysis

	How to read this document

	Related work
	Related problems
	Applications
	Aspects of existing algorithms
	Algorithm frameworks
	Context and kinds of judgements
	Program expansion before analysis
	Unification-based data flow
	Stopping early
	Adaptation after analysis begins

	Scalability
	Type checking
	Knowledge-based systems
	Semantics of Smalltalk

	Developing a new algorithm
	Observations
	Approach
	Structure of the DDP algorithm
	An example execution
	Properties of the general algorithm

	The DDP algorithm
	Overview
	The base language analyzed
	DDP goals
	Flow queries
	Type queries
	Responders queries
	Senders queries

	Context
	Standard solution strategies
	Responders queries
	Senders queries
	Type queries
	Flow queries

	Blocks
	The perform methods
	Pruning
	Overview
	Pruning in batches
	Pruning thresholds and the root-proximity heuristic
	Shrinking the threshold for real-time response
	Drop-dead pruning

	Other language features
	Primitive methods
	Instance creation
	Multiple processes
	Exceptions
	Message sends to super
	Initial state
	Arrays and other collections
	Array literals and sendvar
	Flow of literals

	Implementation issues
	Maintaining tables about syntax
	Parse tree compression
	Supporting external source code

	Mini-Smalltalk
	Overview
	Terminology
	Language overview
	Syntax
	Concrete syntax for methods
	Valid programs
	Literals
	Method specifications and block specifications
	Functions over syntax
	Semantic structures
	Semantic functions
	Initial configuration
	Execution
	Various semantic properties

	Data-flow analysis in Mini-Smalltalk
	Preliminaries
	Variables
	Definition
	Variables found dynamically
	Variables found statically
	Properties of variables

	Types
	Dynamic context
	Flow positions
	Decomposition into simple data-flow structure
	Judgements
	Type judgements
	Simple flow judgements
	Transitive flow judgements
	Responders judgements
	Senders judgements

	Goals
	Restrictions
	Proofs that the DDP domains are lattices
	Properties of cpasplit

	Justification rules
	Meta-judgements
	Subgoals: justification rules viewed backwards
	Overall justification approach
	Type justifications
	Flow justifications
	Responders justifications
	Senders justifications

	Correctness of DDP
	Overview
	Lemmas
	Main theorem
	Transitive flow judgements in the initial configuration
	Type judgements in the initial configuration
	Responders judgements
	Senders judgements
	Type judgements
	Simple flow judgements
	Transitive flow judgements

	Chuck: Semantic program navigation
	Semantic navigation
	Available queries
	Browsing derivations and trying harder

	Empirical validation of DDP
	Issues
	Better versus good
	Performance of demand-driven algorithms
	Performance of type-inference algorithms
	Usefulness
	Performance criteria for usefulness

	Alternative experimental designs
	Comparison to competitors
	Comparison to competitors in other languages
	Performance for smaller programs
	Performance of applications
	Summary

	Actual experimental design
	The program code tested
	The trials
	The machine

	Summary of results
	Analysis and conclusions
	Informal notes
	A pruning schedule for interactive use

	Proposed language changes
	Future work
	Other languages and dialects
	Exhaustive analysis
	Pruning
	Other analysis problems
	Applications

	DDP/CT: Extending DDP with source-tagged classes
	Extensions
	Source-tagged classes
	Inverse type goals
	Senders goals
	Array-element type goals
	Type-specific flow goals

	Example Code Fragments
	Example Goal Graph
	Multi-level source tags
	Related work

	Conclusions
	Bibliography
	Index

